Researchers create 3-D-printed, sweating robot muscle

A team of researchers from Cornell University have created a soft robot muscle that can regulate its temperature through sweating. This form of thermal management is a basic building block for enabling untethered, high-powered robots to operate for long periods of time without overheating, according to the Rob Shepherd, associate professor of mechanical and aerospace engineering, who led the project. The team’s paper, “Autonomic Perspiration in 3-D Printed Hydrogel Actuators,” published in «Science Robotics».

The solution to manage robot temperature: natural cooling system

One of the hurdles for making enduring, adaptable and agile robots is managing the robots’ internal temperature, according to Shepherd. If the high-torque density motors and exothermic engines that power a robot overheat, the robot will cease to operate.

This is a particular issue for soft robots, which are made of synthetic materials. While more flexible, they hold their heat, unlike metals, which dissipate heat quickly. An internal cooling technology, such as a fan, may not be much help because it would take up space inside the robot and add weight. So, Shepherd’s team took inspiration from the natural cooling system that exists in mammals: sweating.

The ability to perspire is one of the most remarkable features of humans,” said co-lead author T.J. Wallin, a research scientist at Facebook Reality Labs. “Sweating takes advantage of evaporated water loss to rapidly dissipate heat and can cool below the ambient environmental temperature. […] So as is often the case, biology provided an excellent guide for us as engineers.”

The partnership with the lab of Emmanuel Giannelis

Shepherd’s team partnered with the lab of Emmanuel Giannelis, the Walter R. Read Professor of Engineering, to create the necessary nanopolymer materials for sweating via a 3-D-printing technique called multi-material stereolithography, which uses light to cure resin into predesigned shapes.

Our contribution is the making of mixtures of nanoparticles and polymeric materials that basically allow us to control the viscosity, or flow, of these fluids,” said Giannelis, also Cornell’s vice provost for research and vice president for technology transfer, intellectual property and research policy.

“Smart” sponges

The researchers fabricated finger like actuators composed of two hydrogel materials that can retain water and respond to temperature—in effect, “smart” sponges. The base layer, made of poly-N-isopropylacrylamide, reacts to temperatures above 30° C (86° F) by shrinking, which squeezes water up into a top layer of polyacrylamide that is perforated with micron-sized pores. These pores are sensitive to the same temperature range and automatically dilate to release the “sweat,” then close when the temperature drops below 30° C.

The evaporation of this water reduces the actuator’s surface temperature by 21° C within 30 seconds, a cooling process that is approximately three times more efficient than in humans, the researchers found. The actuators are able to cool off roughly six times faster when exposed to wind from a fan.

The best part of this synthetic strategy is that the thermal regulatory performance is based in the material itself,” said Wallin. “We did not need to have sensors or other components to control the sweating rate. When the local temperature rose above the transition, the pores would simply open and close on their own.”

The effects on the robots

The team incorporated the actuator fingers into a robot hand that could grab and lift objects, and they realized that autonomous sweating not only cooled the hand, but lowered the temperature of the object as well. While the lubrication could make a robot hand slippery, modifications to the hydrogel texture could compensate by improving the hand’s grip, much like wrinkles in skin.

One disadvantage of the technology is that it can hinder a robot’s mobility. There is also a need for the robots to replenish their water supply, which has led Shepherd to envision soft robots that will someday not only perspire like mammals, but drink like them, too. The ability of a robot to secrete fluids could also lead to methods for absorbing nutrients, catalyzing reactions, removing contaminants and coating the robot’s surface with a protective layer, the researchers wrote.

Other contributors included postdoctoral associate and co-lead author Anand Mishra; postdoctoral associate Wenyang Pan; doctoral student Patricia Xu; and Barbara Mazzolai of the Italian Institute of Technology’s Center for Micro-BioRobotics.

Source: techxpolre.com ‒ The news is adapted with editorial changes by Compositi magazine

Picture: A Cornell team led by Rob Shepherd, associate professor of mechanical and aerospace engineering, made a 3D-printed hand with hydraulically controlled fingers that can cool itself by sweating. Credit: Cornell University


Leggi anche

Gli scienziati della Northwestern University hanno combinato con successo un nanomateriale efficace nella distruzione di agenti nervosi tossici con fibre tessili. Il materiale, una struttura metallo-organica a base di zirconio (MOF), degrada in pochi minuti alcuni degli agenti chimici più tossici conosciuti dall’umanità: VX e soman (GD), un parente più tossico di sarin. Questo nuovo materiale composito potrebbe essere integrato in tute protettive e maschere facciali a uso di coloro che operano in condizioni di estremo pericolo, come la guerra chimica…

Leggi tutto…

I ricercatori guidati dagli ingegneri della Tufts University hanno sviluppato un nuovo metodo di fabbricazione della seta molto più efficiente che consente di riscaldare e modellare il materiale in forme solide per una vasta gamma di applicazioni, compresi i dispositivi medici. Utilizzando questo metodo, le proprietà dei dispositivi a base di seta possono essere ottimizzate per resistenza, flessibilità, funzione molecolare e biodegradabilità…

Leggi tutto…

Un team di ricerca della Fraunhofer Society e della Technical University of Munich (TUM) guidato dal chimico Volker Sieber ha sviluppato una nuova famiglia di poliammidi a partire da un sottoprodotto della produzione di cellulosa, un esempio per un’economia più sostenibile con materiali a base biologica…

Leggi tutto…

Covestro ha collaborato con il Centro di Ricerca e Sviluppo di Guangzhou Automobile Group Co. Ltd. (GAC R&D Center) per sviluppare un leggero schienale in materiale composito per l’ultima concept car elettrica della casa automobilistica cinese, la ENO.146. Il veicolo ha recentemente fatto il suo debutto al Salone Internazionale dell’Automobile di Guangzhou….

Leggi tutto…

Un colore, una linea, piccoli dettagli che nascondono un grande potenziale: imprimere unicità, carattere e stile. Il design trasforma ogni automobile in un oggetto prezioso. Un’auto costruita in serie, pensata per molti, diventa espressione di uno stile di vita, di un modo diverso di vivere la strada. Zender trasforma il design per automobili in passione per l’eleganza su quattro ruote.

Leggi tutto…