Graphene mapping fifty times faster

Raman spectroscopy is a standard technique for characterize the quality of two-dimensional materials like graphene. But it has a major disadvantage: its low speed. Furthermore, the laser light can also damage some of the two-dimensional materials. University of Twente researchers added a smart algorithm to the detection, resulting in ‘Raman’ working at least fifty times faster and making it ‘gentler’ to sensitive materials. The research is presented in National Science Review.

In Raman spectroscopy laser light is sent to the material sample, and scattered photons tell us about the rotations and vibrations of the molecules inside, and thus about the crystal structure. On average, only around 1 in 10 million photons is scattered in this way. This not only makes it hard to detect the right information, it is also very slow: it may take half a second to image one single pixel. The question is if Raman still remains the best option, or if there are better alternatives. Sachin Nair and Jun Gao, researchers of University of Twente, keep Raman spectroscopy as a starting point, but manage to improve the speed drastically: not by changing the technique itself, but by adding an algorithm.

Noise reduction

This algorithm is not unknown in the world of signal processing and it is called Principal Component Analysis. It is used to improve the signal-to-noise ratio. PCA determines the characteristics of noise and those of the ‘real’ signal. The larger the dataset, the more reliable this recognition is, and the clearer the actual signal can be distinguished. Apart from that, modern Raman instruments have a detector called electron-multiplying charge-coupled device (EMCCD) that improves the signal-to-noise-ratio. The net result of this work is that processing one pixel doesn’t take half a second, but only 10 milliseconds or less. Mapping a single sample doesn’t take hours anymore. An important feature for vulnerable materials like graphene oxide is that the intensity of the laser can be lowered two or three times. These are major steps ahead for getting a fast grip on the materials’ properties.                                                                                                             

Multi-purpose

Except for graphene, the improved Raman technique can also be used for other two-dimensional materials like germanene, silicene, molybdenum disulfide, tungsten disulfide and boron nitride. Use of the algorithm is not limited to Raman spectroscopy; techniques like Atomic Force Microscopy and other hyperspectral techniques could also benefit from it.

The research has been done in the group Physics of Complex Fluids of Prof Frieder Mugele, part of UT’s MESA+ Institute. The researchers collaborated with the Medical Cell BioPhysics group and the Physics of Interfaces and Nanomaterials group, both of the University of Twente as well.

Source: The Graphene Council ‒ The news is adapted with editorial change by Compositi magazine.


Leggi anche

ICME (Ingegneria computazionale integrata dei materiali) è un acronimo utilizzato in tutto il mondo per definire un approccio alla progettazione dei prodotti, dei materiali che li compongono e dei metodi produzione. L’attenzione si concentra sui materiali, per comprendere come i processi producono determinate strutture materiali, come tali strutture danno origine alle proprietà dei materiali e come selezionare i materiali per una determinata applicazione. …

Leggi tutto…

I compositi fibrorinforzati sono ampiamente utilizzati nell’industria aerospaziale e in altre industrie ad alta tecnologia. Comprendere in che modo la loro microstruttura e la forza dell’interfaccia fibra/matrice influenzano le loro proprietà di rottura può aiutare a produrre materiali più resistenti. Un recente studio dell’Università dell’Illinois propone un modello per identificare le sensibilità alla fessurazione (cracking) trasversale, uno dei processi chiave di fallimento dei laminati compositi, nella microstruttura composita…

Leggi tutto…

Virgin PETG

Un gruppo di ricercatori della Slovak Academy of Sciences e della Slovak University of Technology hanno sviluppato una serie di nuovi materiali ibridi a basso costo per il processo di stampa 3D FFF (Fused filament fabrication). Rafforzando il filamento di PETG (polietilene tereftalato modificato con aggiunta di glicole) vergine e riciclato con grafite espansa, fibra di carbonio e combinazioni di entrambi, il gruppo è riuscito a migliorare le proprietà meccaniche e termiche delle matrici PETG …

Leggi tutto…

Il Graphene Council ha lanciato un nuovo progetto per testare le diverse caratteristiche possedute da resina standard utilizzata nella produzione di parti in composito rispetto alla stessa resina arricchita con differenti forme di grafene. Il Progetto è svolto in collaborazione con Composites One e l’Utah Advanced Materials and Manufacturing Initiative (UAMMI). Le aziende che producono o sviluppano grafene sono invitate a partecipare allo studio…

Leggi tutto…

Un team di ricercatori del Brightlands Materials Centre nei Paesi Bassi ha sviluppato parti in materiale composito stampate in 3D con funzionalità di auto-sensing. Questa caratteristica potrebbe rappresentare in futuro un’opportunità per monitorare l’integrità strutturale di componenti in composito in campi come quello aerospaziale, edile e sanitario…

Leggi tutto…