Graphene mapping fifty times faster

Raman spectroscopy is a standard technique for characterize the quality of two-dimensional materials like graphene. But it has a major disadvantage: its low speed. Furthermore, the laser light can also damage some of the two-dimensional materials. University of Twente researchers added a smart algorithm to the detection, resulting in ‘Raman’ working at least fifty times faster and making it ‘gentler’ to sensitive materials. The research is presented in National Science Review.

In Raman spectroscopy laser light is sent to the material sample, and scattered photons tell us about the rotations and vibrations of the molecules inside, and thus about the crystal structure. On average, only around 1 in 10 million photons is scattered in this way. This not only makes it hard to detect the right information, it is also very slow: it may take half a second to image one single pixel. The question is if Raman still remains the best option, or if there are better alternatives. Sachin Nair and Jun Gao, researchers of University of Twente, keep Raman spectroscopy as a starting point, but manage to improve the speed drastically: not by changing the technique itself, but by adding an algorithm.

Noise reduction

This algorithm is not unknown in the world of signal processing and it is called Principal Component Analysis. It is used to improve the signal-to-noise ratio. PCA determines the characteristics of noise and those of the ‘real’ signal. The larger the dataset, the more reliable this recognition is, and the clearer the actual signal can be distinguished. Apart from that, modern Raman instruments have a detector called electron-multiplying charge-coupled device (EMCCD) that improves the signal-to-noise-ratio. The net result of this work is that processing one pixel doesn’t take half a second, but only 10 milliseconds or less. Mapping a single sample doesn’t take hours anymore. An important feature for vulnerable materials like graphene oxide is that the intensity of the laser can be lowered two or three times. These are major steps ahead for getting a fast grip on the materials’ properties.                                                                                                             

Multi-purpose

Except for graphene, the improved Raman technique can also be used for other two-dimensional materials like germanene, silicene, molybdenum disulfide, tungsten disulfide and boron nitride. Use of the algorithm is not limited to Raman spectroscopy; techniques like Atomic Force Microscopy and other hyperspectral techniques could also benefit from it.

The research has been done in the group Physics of Complex Fluids of Prof Frieder Mugele, part of UT’s MESA+ Institute. The researchers collaborated with the Medical Cell BioPhysics group and the Physics of Interfaces and Nanomaterials group, both of the University of Twente as well.

Source: The Graphene Council ‒ The news is adapted with editorial change by Compositi magazine.


Leggi anche

I dati relativi ai materiali termoplastici rinforzati con fibre continue sono ora disponibili nel database CAMPUS, che mette a disposizione delle aziende dati utili e affidabili su una svariata quantità di materiali…

Leggi tutto…

Composites UK, l’associazione di categoria che affianca le aziende inglesi che operano nel settore dei compositi, con la collaborazione e il finanziamento del National Composites Centre (NCC), ha lanciato una guida sulle buone pratica relative alla giunzione dei compositi polimerici fibrorinforzati (FRP) disponibile da scaricare gratuitamente…

Leggi tutto…

La ricerca sui materiali avanzati presso l’Università di Manchester ha dimostrato per la prima volta un quadro completo dell’evoluzione dei danni nei compositi tessili intrecciati. Ciò potrebbe aprire la strada a nuove possibilità di progettazione e implementazione per gli ingegneri aerospaziali di prossima generazione…

Leggi tutto…

Sono aperte le iscrizioni al Corso “Controlli non distruttivi, difettosità e prestazioni dei materiali compositi per applicazioni strutturali”, organizzato da Assocompositi e Nano Italy. Il corso si terrà mercoledì 29 e giovedì 30 gennaio al Politecnico di Milano…

Leggi tutto…

Una nuova ricerca condotta da ingegneri dell’Università dell’Illinois combina la sperimentazione su scala atomica con la modellizzazione computerizzata per determinare quanta energia è necessaria per piegare il grafene multistrato, una domanda che ha interpellato gli scienziati da quando il grafene è stato isolato per la prima volta…

Leggi tutto…