Condensatori rivestiti di grafene


Research conducted by a team of MIT scientists suggests that applying a layer of graphene to power plant condensers could significantly improve efficiency. Early testing indicates that use of the material is vastly superior to current methods, and its application could lead to huge monetary savings, as well as a positive impact on the climate.

The majority of power plants generate electricity by using steam to turn a turbine, with that steam then turned back into water to allow the process to start again. The MIT scientists believe that they’ve found a method of improving the efficiency of the condensers that collect the steam, and it could make a big difference to overall power plant efficiency.

The research focuses on improving condensers that collect water in thin sheets, covering their surfaces. Looking at how that film of liquid impedes heat transfer, the team decided to search for a way of improving water droplet formation on the surface of the condensers, thereby improving efficiency. Water-repellent polymer coatings are often used for this purpose, but they’re far from an ideal solution, often degrading quickly in the humid conditions of the plant.

To find a better alternative, the team turned to graphene – a very strong, conductive material that’s known to be hydrophobic. Both the ability of the material to shed water and its durability were tested in an environment of pure water vapor at 100 ºC (212 ºF) – the exact conditions you’d find in an active power plant.

The results showed that the graphene coating improved the rate of heat transfer by a factor of four, and further calculations indicated that optimization could lead to improvements of five to seven times that of existing methods. Furthermore, after two full weeks of testing, there were no signs of degradation.

Improvements to large scale chemical vapor deposition (CVP) graphene production, such as that recently unveiled by MIT, will be instrumental in the potential use of graphene in power plants. In fact, the team believes that the new method could be ready for real world testing in as little as a year.

It’s thought that the condenser improvements could lead to an overall power planet efficiency bump of 2 to 3 percent, translating to millions of dollars per power plant per year. Given the vast number of power plants that make use of condensers, that could translate into a big positive impact on global carbon emissions.


Leggi anche

Si chiama Marlic (Marche applied research for innovative composites) il progetto di economia circolare, co-finanziato dalla Regione Marche attraverso fondi europei, che prevede di ridare nuova vita a materiali compositi di scarto, creando il nuovo da qualcosa che altrimenti andrebbe buttato e disperso nell’ambiente. …

Leggi tutto…

Strumenti costosi e di dimensioni importanti, le turbine eoliche sono macchine che devono funzionare il più efficacemente possibile e con tempi di fermo estremamente ridotti. Questo fa sì che non si possano commettere errori durante le operazioni di produzione e installazione. …

Leggi tutto…

The global composites community reunited at JEC World from May 3rd to 5th for 3 busy rewarding days of innovation, networking and knowledge sharing. The industry was excited to reconnect and the show exceeded all expectations in terms of product launches, content and business activity. The event welcomed 32,000+ professional visits, in Paris and online, from 115 countries and featured 1,201 exhibitors and 26 pavilions….

Leggi tutto…

Ilium Composites, produttore globale di rinforzi compositi strutturali in fibra di vetro, ha sviluppato un prodotto innovativo per garantire una migliore finitura estetica. Si tratta di Amplify surface veil che trova applicazione soprattutto nel settore marittimo e automobilistico. Preferito rispetto alle alternative in metallo, non ha rivali in termini di rapporto qualità/prezzo e di resistenza chimica…

Leggi tutto…

The use of polymer matrix composite materials presents the following challenge to the designer: “How can I structurally bond them with other composites, metals or polymers?”. advances in structural adhesives have enabled designers to create products meeting structural integrity requirements without the use of mechanical fasteners, rivets, or welding. Could the structural adhesive – which has considerable advantages – be the best option to assemble the next generation of composites? Let’s find out together in this project that won our first call for papers!…

Leggi tutto…