Compositi reattivi ai raggi UV per gli elicotteri del futuro

ARL’s  (Army Research Laboratory) Frank Gardea, a research engineer, said the focus of the research was on controlling how molecules interact with each other. He said the aim was to “have them interact in such a way that changes at a small size, or nanoscale, could lead to observed changes at a larger size, or macroscale”. “An important motivation for this work is the desire to engineer new structures, starting from the nanoscale, to enable advanced rotorcraft concepts that have been proposed in the past but were infeasible due to limitations in current composites,” said Bryan Glaz, chief scientist of ARL’s Vehicle Technology Directorate.

One of the most important capabilities envisioned by these concepts is a significantly reduced maintenance burden due to compromises we make to fly at high speeds.The reduced scheduled maintenance of future Army aviation platforms is an important technological driver for future operating concepts. The enhanced mechanical properties with potentially low weight penalties enabled by the new technique could lead to nanocomposite-based structures that would enable rotorcraft concepts that we cannot build today.

The joint work shows that these composite materials can become 93% stiffer and 35% stronger after a five-minute exposure to UV light. The technique consists of attaching UV light-reactive molecules to reinforcing agents like carbon nanotubes, which are then embedded in a polymer. Exposure to UV light triggers a chemical reaction that enhances the interaction between the reinforcing agents and the polymer, making the material stiffer and stronger.

The researchers said the chemistry used in this technique is generally applicable to a variety of reinforcement/polymer combinations, thereby expanding the utility of this control method to a wide range of material systems. “This research shows that it is possible to control the overall material property of these nanocomposites through molecular engineering at the interface between the composite components. This is not only important for fundamental science but also for the optimization of structural component response,” said Zhongjie Huang, a postdoctoral research fellow at the University of Maryland.

Future structures based on this work may help lead to new composites with controlled structural damping and low weight that could allow the development of low maintenance, high speed rotorcraft concepts that are currently not feasible (e.g. soft in-plane tiltrotors). In addition, controllable mechanical response will allow for the development of adaptive aerospace structures that could potentially accommodate mechanical loading conditions.

Collaboration between the ARL and the (UMD) was crucial for the development of this technique. “In our lab at UMD we have been developing unique carbon nanomaterials and chemistry, but it was not until Gardea approached us did we become aware of the intriguing challenge and opportunity for reconfigurable composite materials,” said YuHuang Wang, professor in the Department of Chemistry and Biochemistry at the University of Maryland. “Together we have achieved something that is quite remarkable.”


Leggi anche

L’agenzia governativa americana National Institute of Standards and Technology (NIST) ha pubblicato una relazione sull’implementazione dell’utilizzo dei materiali compositi in specifiche applicazioni infrastrutturali, quali dighe, ponti, autostrade, ferrovie e illuminazione stradale…

Leggi tutto…

L’associazione di categoria tedesca ha rilasciato gli esiti del suo decimo sondaggio semestrale che identifica gli indicatori chiave di prestazione (KPI) per il mercato dei materiali fibrorinforzati (FRP). L’indagine ha riguardato tutte le aziende associate alle quattro organizzazioni ombrello di Composites Germany: AVK, CCeV, CFK-Valley e Hybrid Lightweight Construction Technologies…

Leggi tutto…

Gli avventori del nuovo centro commerciale Halls Heads appena ristrutturato saranno accolti da un nastro a spirale in composito di 3,5 x 2,5 m rappresentante il logo di uno dei proprietari del centro. Il nastro è costituito da una matrice in Divinycell IPN con una resina in vinilestere e pesa 155 kg in tutto…

Leggi tutto…

KraussMaffei sta ampliando la sua esperienza nel campo della pultrusione, ovvero il processo per la produzione continua di componenti in plastica rinforzata con fibre (FRP), con la messa in servizio di un secondo sistema di pultrusione presso il suo Centro Tecnologico di Monaco, in Germania. Il nuovo sistema è stato progettato per fabbricare barre rinforzate con fibra di vetro per elementi in calcestruzzo nel settore edile…

Leggi tutto…

Monitoraggio sismico: un particolare intonaco realizzato con una serie di materiali compositi, già in uso nei settori aeronautico e automobilistico, potrebbe rinforzare le abitazioni nelle zone a rischio terremoti. È questo l’obiettivo del centro di ricerche Enea, che durante prove in laboratorio ha verificato un sistema di rinforzo strutturale poco invasivo a base di fibra di vetro, rigorosamente Made in Italy…

Leggi tutto…