Organic composites with unique properties for stretchable thermoelectric generators

Researchers at the Laboratory of Organic Electronics at Linköping University have developed an organic composite material with unique properties – not only is it soft and stretchable, it also has a high electrical conductivity and good thermoelectric properties. This makes it ideal for many wearable applications, as smart clothing, wearable electronics and electronic skin..

The researchers have published the result in Nature Communications, together with colleagues from Belgium, New Zealand and California.

A totally new composite

Nara Kim, postdoc and principal research engineer in the Laboratory of Organic Electronics, has combined three materials: the conducting polymer PEDOT:PSS, a water-soluble polyurethane rubber, and an ionic liquid. The result is a composite with unique properties. The PEDOT:PSS gives it thermoelectric properties, the rubber provides elasticity, and the ionic liquid ensures softness.

Nara Kim has carried out the research under the leadership of Professor Xavier Crispin and Senior Lecturer Klas Tybrandt, both at the Laboratory of Organic Electronics. “Xavier Crispin is a pioneer in organic thermoelectric materials; Klas Tybrandt is an expert in soft electronic materials; and I contribute my knowledge of organic composites. We came up with the idea for the new material together”, she says. PEDOT:PSS is the most common conducting polymer and is used in many applications, not least due to its good thermoelectric properties. But thick polymer film is too hard and brittle to be successfully integrated into wearable electronics.

Our material is 100 times softer and 100 times more stretchable than PEDOT:PSS”, says Klas Tybrandt, who leads the group of Soft Electronics at the Laboratory of Organic Electronics.

Printable onto various surfaces

The ability to control the structure of the material both at the nanoscale and the microscale allows us to combine the excellent properties of the different materials in a composite”, he says.

This new composite is also printable. “The composite was formulated by water-based solution blending and it can be printed onto various surfaces. When the surface flexes or folds, the composite follows the motion. And the process to manufacture the composite is cheap and environmentally friendly”, says Nara Kim.

The researchers see a huge range of new possibilities using the material to create soft and elastic organic conducting materials.

There are many ionic liquids, conducting polymers and traditional elastomers that can be combined to give new nanocomposites for many applications, such as thermoelectric generators, supercapacitors, batteries, sensors, and in wearable and implantable applications that require thick, elastic and electrically conducting materials”, says Xavier Crispin.

Principal financers of the research have been the Knut and Alice Wallenberg Foundation, the Göran Gustafsson Foundation and the Swedish Foundation for Strategic Research, together with the strategic research area in advanced functional materials, AFM, at Linköping University.

More information

Elastic Conducting Polymer Composites in Thermoelectric Modules”, Nara Kim, Samuel Lienemann, Ioannis Petsagkourakis, Desalegn Alemu Mengistie, Seyoung Kee, Thomas Ederth, Viktor Gueskine, Philippe Leclère, Roberto Lazzaroni, Xavier Crispin, and Klas Tybrandt, Nature Communications 2020, doi 10.1038/s41467-020-15135-w

Fig.1 – Nara Kim, with Xavier Crispin and Klas Tybrandt in the background. Ph: Thor Balkhed

Fig.2 -The material is stretchable in two directions. Ph: Thor Balkhed

Source: Linköping University


Leggi anche

The realization of a human settlement on the Moon is the main purpose of most future space missions. Despite it represents a fundamental and necessary step for this scope, the lunar environment, and high mission cost do not make this challenge easy. This article – published in the March issue of Compositi Magazine – tries to solve the previously mentioned problem, showing the preliminary design of a lightweight and deployable habitat able to ensure long-duration missions on the lunar surface….

Leggi tutto…

scarpe sportive

La collaborazione tra Covestro e Anta Sports (azienda che raggruppa prestigiosi marchi di sportswear) ha dato vita a una nuova scarpa da basket testata dall’all-star NBA Klay Thompson. Le sneakers sono disegnate per lo sport ma dalla metà degli anni ’80 sono entrate prepotentemente nella vita di tutti i giorni. …

Leggi tutto…

Luna Rossa triumphs at the America’s Cup, thanks to its formidable sails and hull characteristics. This win brings to the fore the contribution of composite materials and technopolymers to the racing boats and the yachting industry….

Leggi tutto…

eTa Blades progetta, sviluppa e produce pale eoliche innovative per turbine di nuove installazioni e propone e supporta programmi di Re-blading per parchi eolici già in esercizio per le esigenze della generazione eolica moderna. Lavora alla creazione di nuovi profili alari, utilizzando tecnologie e materiali innovativi al fine di migliorare complessivamente l’efficienza degli impianti eolici….

Leggi tutto…

CMC composite ceramic matrix, a material as fascinating as it is effective, is now able to excel in the world of motorsport. This innovative material applied in the production of discs reached success thanks to its lightness, hardness, wear resistance, and low deformation….

Leggi tutto…