Robot costruirà parti in composito per veicoli spaziali


Last December, we told you about a giant composites-making robot NASA installed at its Langley Research Center to do R&D for making better aerospace materials. Now, a similar robot has arrived at the agency’s Marshall Space Flight Center. But this one will be building the biggest composite parts ever made for space vehicles like NASA’s Space Launch System (SLS).

Both robots are huge, 21-ft long mechanical arms made by Electroimpact that precisely lay down an epoxy matrix and carbon fibers by sliding up and down a 40-ft track in preprogrammed patterns. The difference is primarily in how the two will be used, Chauncey Wu, senior research engineer at Langley Research Center, told Design News. Langley’s research robot, named ISAAC (Integrated Structural Assembly of Advanced Composites), is designed as a research platform to test out materials concepts. It will help NASA researchers investigate the use of composites for aviation, spacecraft, and launch systems, as well as reduce the time required for development, verification, and regulatory acceptance of new materials and structures.

Marshall’s new robotic arm is designed more as an operational robot to build large parts, said Wu. According to a news release, that robot will help researchers develop high-speed, less expensive manufacturing processes for making large composite rocket structures. As we reported last year, NASA has already developed and tested big composite parts for the SLS, such as a huge, 18-ft carbon composite cryogenic fuel tank.

The SLS is a heavy-lift rocket designed to take humans on deep space exploration missions to Mars and beyond. Every ounce saved in weight makes a big difference in how much payload it can carry and how long its fuel can last. But that’s not all. NASA also hopes to build other large spacecraft with composites, of 26 ft or more in diameter, such as landers, rovers, and habitats. At Marshall, the robot’s first project will be creating large composite structures for a Technology Demonstration Mission for the SLS.

The robot is being housed in Marshall’s Composites Technology Center, part of NASA’s National Center for Advanced Manufacturing. Electroimpact’s engineers helped Marshall engineers customize the robot and supporting software for building large space structures. The center contains a variety of support infrastructure for composite manufacturing, including large autoclaves, curing chambers, test facilities, and digital analysis systems.
Photo 1’s caption: NASA and Boeing co-developed this huge, 18-ft diameter carbon composite cryogenic rocket fuel tank for the Space Launch System. Its outer shell is the same size as propellant tanks in today’s rocket. The tank will save about 30% in weight and 25% in cost over metal tanks. (Source: Boeing)

Photo 2’s caption: NASA’s new 21-ft robot arm moves on a track in the Composites Technology Center of the agency’s National Center for Advanced Manufacturing at Marshall Space Flight Center. The robot’s head is dispensing hair-thin carbon fiber tape in precise patterns to make a large composite panel. (Source: NASA/MSFC/Fred Deaton)

Photo 3’s caption: The robot’s head releases 16 spools of composite fiber tape in precise patterns. As the fibers are released they are heated to adhere to various surfaces. The head can be changed out for different projects. (Source: NASA/MSFC/Fred Deaton)

Photo 4’s caption: Last year, NASA engineers tested the full-scale composite cryogenic rocket fuel tank, shown here in a test stand at Marshall Space Flight Center. (Source: NASA/MSFC/David Olive)


Leggi anche

In occasione dell’evento JEC Forum ITALY – organizzato da JEC Group in collaborazione con Assocompositi – del prossimo 6-7 giugno 2023 a Bologna, HP Composites terrà un intervento all’interno della sessione “Sostenibilita’ e circolarita’ dei materiali compositi”. Disponibile ora l’abstract dello speech….

Leggi tutto…

Grazie alle loro proprietà tecniche e al peso ridotto, i compositi vengono impiegati in quasi tutti i settori industriali e la plastica rinforzata con fibra di vetro (GFRP) costituisce la maggior parte di questo mercato. La necessità di sviluppare un processo economico per il riciclaggio dei rifiuti contenenti fibre pregiate ha spinto Longworth a lanciare EMPHASIZING, un programma di ricerca, finanziato da Innovate UK, che esplora la circolarità dei compositi in fibra di vetro….

Leggi tutto…

L’ossatura dei moduli di servizio dei satelliti realizzati nell’impianto di Torino di Thales Alenia Space richiede spesso l’impiego di strutture in materiali compositi che devono essere tagliati con estrema precisione. Qui entra in gioco Zund che ha fornito a Thales Alenia Space un sistema di taglio digitale automatico e altamente produttivo, in grado di lavorare un’ampia varietà di materiali, tra i quali spiccano i compositi…

Leggi tutto…

Il Ministero Federale per gli affari economici e l’azione per il clima, nell’ambito del programma “Rafforzare le dinamiche di trasformazione energetica nella regione del carbone e nelle località delle centrali elettriche”, ha stanziato quasi sei milioni di euro per sostenere l’Università tecnologica di Chemnitz nella creazione e nell’espansione della Carbon LabFactory, un’infrastruttura di ricerca per le fibre di carbonio ecologiche. …

Leggi tutto…

L’intelligenza artificiale dà vita ad un processo di produzione di compositi basato su un approccio digital twin, che sfrutta l’apprendimento automatico (ML) dato dai big data per elaborare un gemello digitale da utilizzare nel processo di produzione delle lame. Questo framework ML è in grado di fornire un riscontro in tempo reale, riducendo il rischio di difetti e azzerando i costi di produzione dei prototipi fisici. …

Leggi tutto…