Engineers at University of Delaware achieve 3D printing of continuous carbon fiber

A team of engineers from the University of Delaware (US) has developed a novel 3D printing technology that enables low-cost, flexible production of items made of fiber-reinforced polymer composites using continuous carbon fibers and thermosetting polymers. Their results were recently published in the journal Matter.

 

Fiber-reinforced polymer composites and 3D printing

Fiber-reinforced polymer composites offer many advantages, but their big drawback is they are typically complex and expensive to manufacture. In recent years, 3D printing of composites has been successfully demonstrated using thermoplastic polymers and discontinuous fillers, but the resulting 3D-printed composites often have poor mechanical properties and low service temperature due to the limitations of the constituent properties. Consequently, 3D printing of composites using continuous carbon fibers and thermosetting polymers is expected to offer exceptional mechanical properties and thermal stability as well as featured design flexibility, low cost, reliability, and repeatability. However, no additive manufacturing technique has ever been reported to process continuous carbon fibers and thermosetting polymers for direct 3D printing of the finished composite.

 

A novel technology

This is believed to be the first time anyone has achieved such 3D printing of continuous carbon fiber and thermosetting composite,” said Kun (Kelvin) Fu, an assistant professor of mechanical engineering at the University of Delaware, the corresponding author of this work. Kun (Kelvin) Fu runs a Composite and Additive Manufacturing Lab at University of Delaware, and his lab is focusing on additive manufacturing and processing of materials, structures, and devices across multiple length scales for applications in energy, environment, and health.

Continuous carbon fibers and thermosetting resins are very important to make strong and light-weight composites, and they are widely used in many applications, such as aerospace, automotive, and sports products,” continued Fu, “3D printing could reduce labor and tooling cost, and fabricate composite in a more energy-efficient, rapid, and reliable way with minimum defects.”

Fu and the other researchers of the team developed an approach called localized in-plane thermal assisted (LITA) 3D printing, which allows the user to control the thickness and degree of curing of liquid polymer that solidifies into the desired shape.

In LITA 3D printing, the researchers carefully manipulate the temperature of the carbon fibers, aiding the flow of liquid polymers into channels between the carbon fibers. Then, the polymers are cured, solidifying into a 3D structure. No post-curing is needed in LITA 3D printing, which could save a large amount of energy compared to the conventionally fabricated composites requiring tens of hours of post-curing.

The team developed a robotic system that includes a unique printing head and automated robot arm. This customized 3D printer allows the group to print a variety of shapes and structures.

LITA 3D printing could provide many industries with a rapid, energy-efficient method to make composite components in a variety of shapes using a variety of combinations of polymers and fibers.

continuous carbon fiber printed with LITA 3D printing technology
A CT scan shows a cross-sectional image of the composite materials. – Credit: University of Delaware

Featured image: This is a schematic of the new 3D-printing approach devised by UD researchers. “A heater touches and moves along the carbon fibers to generate a dynamic temperature gradient, triggering the dispensed liquid polymer to infuse and cure in the carbon fiber structures,” according to the recently published journal article. – Credit: University of Delaware

Source: University of Delaware


Leggi anche

Refitech Composite Solutions innova i propri processi produttivi, installando una macchina CNC a cinque assi per la finitura di componenti compositi, che si aggiunge ai sistemi già operativi a tre assi. La nuova strumentazione consentirà di eseguire la lavorazione di forme 3D ancora più complesse in modo completamente automatico, ad alta velocità, garantendo una qualità elevata e una riproducibilità perfetta, in vista dei volumi di serie….

Leggi tutto…

Tim Young, Head of Sustainability del National Composites Centre, ha illustrato a “The Engineer” i risultati di una ricerca realizzata dall’istituto che fornisce una panoramica delle possibilità di introdurre soluzioni basate sulla chimica nella supply chain dei compositi nel Regno Unito, al fine di garantire la sostenibilità nel settore….

Leggi tutto…

Il National Composites Center (NCC) sta promuovendo un progetto industriale congiunto (JIP) che affronterà la sfida del benchmarking delle prestazioni di permeabilità dei tubi compositi termoplastici (TCP) per la distribuzione dell’idrogeno. L’obiettivo verrà raggiunto attraverso la produzione di campioni di tubi standardizzati, che costituiranno un database di misurazione della capacità del rivestimento e del materiale di rinforzo….

Leggi tutto…

L’azienda belga Umbrosa sviluppa ombrelli e ombrelloni per esterni che, essendo utilizzati anche in ambienti costieri o boschivi, devono essere in grado di sopportare l’esposizione prolungata al vento forte, all’acqua salata, alle piogge e ai raggi solari. Per migliorare le prestazioni meccaniche dei propri prodotti, Umbrosa ha scelto di affidarsi ad Exel Composites che ha progettato nervature in compositi per ombrelli….

Leggi tutto…

The Italian automaker Pagani makes some of the world’s most exclusive hypercars. The chassis consists entirely of carbon-fiber parts. For cutting, Pagani has been relying on equipment from Swiss cutting-system manufacturer Zünd for more than 20 years. In 2015, Pagani installed its first cutting system Zünd G3 L-2500. The 2018 was the year of the second G3 L-2500….

Leggi tutto…