New biomaterial for 3-D printing of tissue-like vascular structures

An international team of scientists have discovered a new material that can be 3-D printed to create tissue-like vascular structures.

In a new study published today in Nature Communications, led by Professor Alvaro Mata at the University of Nottingham and Queen Mary University London, the researchers have described a way to 3-D print graphene oxide with a protein which can organise into tubular structures that replicate some properties of vascular tissue.

Professor Mata said: “This work offers opportunities in biofabrication by enabling simulatenous top-down 3-D bioprinting and bottom-up self-assembly of synthetic and biological components in an orderly manner from the nanoscale. Here, we are biofabricating micro-scale capillary-like fluidic structures that are compatible with cells, exhibit physiologically relevant properties, and have the capacity to withstand flow. This could enable the recreation of vasculature in the lab and have implications in the development of safer and more efficient drugs, meaning treatments could potentially reach patients much more quickly.”

Material with remarkable properties

Self-assembly is the process by which multiple components can organise into larger well-defined structures. Biological systems rely on this process to controllably assemble molecular building-blocks into complex and functional materials exhibiting remarkable properties such as the capacity to grow, replicate, and perform robust functions.

The new biomaterial is made by the self-assembly of a protein with graphene oxide. The mechanism of assembly enables the flexible (disordered) regions of the protein to order and conform to the graphene oxide, generating a strong interaction between them. By controlling the way in which the two components are mixed, it is possible to guide their assembly at multiple size scales in the presence of cells and into complex robust structures.

The use as a 3-D printing bioink

The material can then be used as a 3-D printing bioink to print structures with intricate geometries and resolutions down to 10 um. The research team have demonstrated the capacity to build vascular-like structures in the presence of cells and exhibiting biologically relevant chemical and mechanical properties.

Dr. Yuanhao Wu is the lead researcher on the project, she said: “There is a great interest to develop materials and fabrication processes that emulate those from nature. However, the ability to build robust functional materials and devices through the self-assembly of molecular components has until now been limited. This research introduces a new method to integrate proteins with graphene oxide by self-assembly in a way that can be easily integrated with additive manufacturing to easily fabricate biofluidic devices that allow us replicate key parts of human tissues and organs in the lab.”

Image 1: Close-up of a tubular structure made by simultaneous printing and self-assembling between graphene oxide and a protein. Credit: Professor Alvaro Mata

Image 2: Scanning electron microscopy image depicting endothelial cells growing on the surface of the printed tubular structures. Credit: Professor Alvaro Mata

Source: University of Nottingham


Leggi anche

Tim Young, Head of Sustainability del National Composites Centre, ha illustrato a “The Engineer” i risultati di una ricerca realizzata dall’istituto che fornisce una panoramica delle possibilità di introdurre soluzioni basate sulla chimica nella supply chain dei compositi nel Regno Unito, al fine di garantire la sostenibilità nel settore….

Leggi tutto…

Il National Composites Center (NCC) sta promuovendo un progetto industriale congiunto (JIP) che affronterà la sfida del benchmarking delle prestazioni di permeabilità dei tubi compositi termoplastici (TCP) per la distribuzione dell’idrogeno. L’obiettivo verrà raggiunto attraverso la produzione di campioni di tubi standardizzati, che costituiranno un database di misurazione della capacità del rivestimento e del materiale di rinforzo….

Leggi tutto…

L’azienda belga Umbrosa sviluppa ombrelli e ombrelloni per esterni che, essendo utilizzati anche in ambienti costieri o boschivi, devono essere in grado di sopportare l’esposizione prolungata al vento forte, all’acqua salata, alle piogge e ai raggi solari. Per migliorare le prestazioni meccaniche dei propri prodotti, Umbrosa ha scelto di affidarsi ad Exel Composites che ha progettato nervature in compositi per ombrelli….

Leggi tutto…

The Italian automaker Pagani makes some of the world’s most exclusive hypercars. The chassis consists entirely of carbon-fiber parts. For cutting, Pagani has been relying on equipment from Swiss cutting-system manufacturer Zünd for more than 20 years. In 2015, Pagani installed its first cutting system Zünd G3 L-2500. The 2018 was the year of the second G3 L-2500….

Leggi tutto…

La casa automobilistica italiana Pagani produce alcune delle hypercars più esclusive al mondo. La monoscocca è realizzata in materiali compositi di ultima generazione come il Carbo-Titanio. Per il taglio, l’azienda modenese si affida da oltre vent’ anni alle tecnologie della svizzera Zünd. Nel 2015, Pagani ha installato il suo primo sistema di taglio Zünd, modello G3 L-2500. Risale, invece, al 2018 l’inserimento in produzione del secondo G3 L-2500….

Leggi tutto…