A new technique to produce glass with 3-D printing

ETH Zürich researchers used a 3-D printing process to produce complex and highly porous glass objects. For producing this type of glass, they used a special resin that can be cured with UV light. Producing glass objects using 3-D printing is not easy. Only a few groups of researchers around the world have attempted to produce glass using additive methods. Some have made objects by printing molten glass, but this process requires extremely high temperatures and heat-resistant equipment. Others have used powdered ceramic particles that can be printed at room temperature and then sintered later to create glass; however, objects produced in this way are not very complex.

Researchers from ETH Zürich have now used a new technique to produce complex glass objects with 3-D printing. The method is based on stereolithography, one of the first 3-D printing techniques developed during the 1980s. David Moore, Lorenzo Barbera, and Kunal Masania in the Complex Materials group led by ETH processor André Studart have developed a special resin that contains a plastic, and organic molecules to which glass precursors are bonded. The researchers reported their results in the latest issue of the journal Natural Materials.

Light used to “grow” objects

The resin can be processed using commercially available Digital Light Processing technology. This involves irradiating the resin with UV light patterns. Wherever the light strikes the resin, it hardens because the light sensitive components of the polymer resin cross link at the exposed points. The plastic monomers combine to form a labyrinth-like structure, creating the polymer. The ceramic-bearing molecules fill the interstices of this labyrinth.

An object can thus be built up layer by layer. The researchers can change various parameters in each layer, including pore size: weak light intensity results in large pores; intense illumination produces small pores. “We discovered that by accident, but we can use this to directly influence the pore size of the printed object,” says Masania. The researchers can also modify the microstructure, layer by layer, by mixing silica with borate or phosphate and adding it to the resin. Complex objects can be made from different types of glass, or even combined in the same object using the technique.

The researchers then fire the blank produced in this way at two different temperatures: at 600˚C to burn off the polymer framework and then at around 1000˚C to densify the ceramic structure into glass. During the firing process, the objects shrink significantly, but become transparent and hard like window glass.

Patent application submitted

These 3-D-printed glass objects are still little dimensions. Large glass objects, such as bottles, drinking glasses or windowpanes, cannot be produced in this way ‒ which was not actually the goal of the project, according to Masania.

The first aim was to prove the feasibility of producing glass objects of complex geometry using a 3-D printing process. However, the researchers applied for a patent and are currently negotiating with a major Swiss glassware dealer who wants to use the technology in his company.

Source: ETH Zürich – The news was adapted with editorial changes by Compositi magazine.


Leggi anche

Chem -Trend è in grado di fornire sistemi distaccanti a base di acqua o di solvente per processi di stampaggio RTM e per via umida, compresi primer per stampi, sigillanti, distaccanti interni ed esterni e prodotti ausiliari come i detergenti per stampi. Essi consentono ai produttori che fabbricano volumi elevati di materiali compositi per l’industria automobilistica di mantenere l’operatività degli stampi….

Leggi tutto…

Gli UAV (unmanned aerial vehicle), i veicoli aerei senza pilota, ora sono droni e la tecnologia dei droni guarda oggi ai materiali compositi. Una delle grandi promesse di utilizzo dei compositi nei droni è quella di abilitare i sistemi persistenti di lunga durata che forniscono un accesso a Internet WiFi su ampia area. Due i prototipi in volo, L’ Aquila di Facebook e il Jungle Hawk Owl prodotto dall’Istituto di tecnologia del Massachusetts

Leggi tutto…

Introduzione alle metodologie di calcolo e di caratterizzazione
Clicca e scopri di cosa si parlerà durante la prima giornata di corso

Leggi tutto…

Annunciato un nuovo kit wide-body per la Porsche 991, si tratta di il un insieme di nuove barre paraurti anteriori e posteriori, passaruota anteriori estesi con piccole prese d’aria incorporate in un diffusore sul retro. Per completare il look, TopCar Porsche ha sviluppato anche in carbonio il cofano e lo spoiler posteriore….

Leggi tutto…