Addressing key challenges in composite AM for maritime parts

From December issue of Compositi Magazine

Yannick Willemin, Head of marketing & business development, 9T Labs AG

 

For millennia, wood has had a very strong relationship with shipbuilding. Among its benefits, wood is both natural and usually locally sourced while offering very-high performances in harsh marine environments. Another beneficial property is that wood is anisotropic, meaning its properties vary in different directions (e.g., it is stronger along the grain than across it).

While wood is still used in modern shipbuilding, many other materials have since made their appearance, including metals, polymers, and composites. As in other fields, the racing segment provides glimpses of how ships could be made in the future. In America’s Cup, considered the Formula 1 on water, most parts are manufactured out of carbon fiber-reinforced composites.

However, while composites are found in larger boat components like hulls, masts, sails, foils, etc., metal still dominates in smaller, thicker, more complex parts – regardless of whether the boat is for racing, shipping, or leisure.

  • Practical fiber-placement limitations with continuous-fiber composites
  • Resolution in machined composites
  • Challenges accurately predicting performance of discontinuous-fiber composites

These three factors lead to lower repeatability and reproducibility (R&R) values and higher costs – particularly with smaller parts produced at lower volumes – limiting usage of these materials in applications where they could be quite useful.

To solve these challenges, the new Additive Fusion Technology (AFT) developed by 9T Labs combines the resolution and unmatched design freedom of 3D printing with the performances of compression-molded continuous-carbon fiber composites. The hybrid AFT platform produces precision structural parts in continuous carbon fiber-reinforced thermoplastic composites (including PEEK, PEKK, PPS, PA12) in small to medium size (printer build envelope 350 x 270 x 250 millimeters) for low to medium volume production (100 to 10,000 parts/year).

Uniquely, the technology combines 3D printing – done in the Build Module layup/preform machine – followed by consolidation and forming in the Fusion Module compact compression press with matchedmetal mold. The final parts also offer 100% traceability.

The system produces parts with higher complexity achieved with greater design freedom, the ability to insert hardware to reduce finishing, plus finer fiber-orientation control than other continuous-fiber layup/forming processes. Scrap rates are greatly reduced since parts are printed near net shape. Exclusive focus on thermoplastic matrices brings:

  1. fast cycle times
  2. recyclability
  3. the ability to join smaller components into larger, more complex modules via welding

Excellent surface finishes, low voids, and high R&R are accomplished by consolidating/forming in metal molds.

Additive Fusion Technology permits cost-competitive manufacturing in part sizes and production volumes typically hard to achieve in structural carbon composites. Initially, design opportunities that reduce weight and cost while increasing performance of marine equipment are being targeted. Suitable parts already identified include headboards, V-block, CRX rollers, and winch handles. In the case of headboards, the benchmark material is aluminum. With AFT, part weight can be halved (from 1.05 kg to 0.55 kg) at competitive cost.

Finally, in addition to optimizing mechanical properties at lower mass and cost, another benefit of producing composite parts via additive manufacturing is the opportunity to apply surface layers with unique aesthetic functions.

 

 

Leggi anche

The structural acrylic adhesives ARALDITE®2080 and ARALDITE®2081 from Huntsman have been developed to ensure high strength and lower flammability than traditional methyl methacrylate-based products. For most applications, they require minimal surface preparation and ensure good adhesion performance on different substrates (plastic, composites and metal) along with rapid curing at room temperature….

Leggi tutto…

Un gruppo di ricercatori dell’Università del Queensland del Sud, sotto la guida del dottor Wahid Ferdous, sta studiando come sostituire le traverse ferroviarie in legno per i ponti con un nuovo materiale costituito da fibre composite e materiali di scarto. Il governo dello stato del Queensland e il produttore di traverse in cemento Austrak hanno finanziato il progetto attraverso una borsa di ricerca per l’industria….

Leggi tutto…

Analizzando le proprietà dei nuovi ritardanti di fiamma per materiali compositi, i ricercatori del laboratorio Advanced Fibers dell’Empa, centro svizzero per lo studio dei materiali avanzati, sotto la guida di Sabyasachi Gaan, hanno elaborato una tecnica che permette di rendere recuperabili le resine epossidiche, il cui limite di riutilizzo è intrinseco alla natura di materiali termoindurenti, ossia polimeri altamente reticolati che, una volta induriti, non possono essere sottoposti nuovamente a fusione senza carbonizzarsi….

Leggi tutto…

Refitech Composite Solutions innova i propri processi produttivi, installando una macchina CNC a cinque assi per la finitura di componenti compositi, che si aggiunge ai sistemi già operativi a tre assi. La nuova strumentazione consentirà di eseguire la lavorazione di forme 3D ancora più complesse in modo completamente automatico, ad alta velocità, garantendo una qualità elevata e una riproducibilità perfetta, in vista dei volumi di serie….

Leggi tutto…

Tim Young, Head of Sustainability del National Composites Centre, ha illustrato a “The Engineer” i risultati di una ricerca realizzata dall’istituto che fornisce una panoramica delle possibilità di introdurre soluzioni basate sulla chimica nella supply chain dei compositi nel Regno Unito, al fine di garantire la sostenibilità nel settore….

Leggi tutto…