Engineers at University of Delaware achieve 3D printing of continuous carbon fiber

A team of engineers from the University of Delaware (US) has developed a novel 3D printing technology that enables low-cost, flexible production of items made of fiber-reinforced polymer composites using continuous carbon fibers and thermosetting polymers. Their results were recently published in the journal Matter.

 

Fiber-reinforced polymer composites and 3D printing

Fiber-reinforced polymer composites offer many advantages, but their big drawback is they are typically complex and expensive to manufacture. In recent years, 3D printing of composites has been successfully demonstrated using thermoplastic polymers and discontinuous fillers, but the resulting 3D-printed composites often have poor mechanical properties and low service temperature due to the limitations of the constituent properties. Consequently, 3D printing of composites using continuous carbon fibers and thermosetting polymers is expected to offer exceptional mechanical properties and thermal stability as well as featured design flexibility, low cost, reliability, and repeatability. However, no additive manufacturing technique has ever been reported to process continuous carbon fibers and thermosetting polymers for direct 3D printing of the finished composite.

 

A novel technology

This is believed to be the first time anyone has achieved such 3D printing of continuous carbon fiber and thermosetting composite,” said Kun (Kelvin) Fu, an assistant professor of mechanical engineering at the University of Delaware, the corresponding author of this work. Kun (Kelvin) Fu runs a Composite and Additive Manufacturing Lab at University of Delaware, and his lab is focusing on additive manufacturing and processing of materials, structures, and devices across multiple length scales for applications in energy, environment, and health.

Continuous carbon fibers and thermosetting resins are very important to make strong and light-weight composites, and they are widely used in many applications, such as aerospace, automotive, and sports products,” continued Fu, “3D printing could reduce labor and tooling cost, and fabricate composite in a more energy-efficient, rapid, and reliable way with minimum defects.”

Fu and the other researchers of the team developed an approach called localized in-plane thermal assisted (LITA) 3D printing, which allows the user to control the thickness and degree of curing of liquid polymer that solidifies into the desired shape.

In LITA 3D printing, the researchers carefully manipulate the temperature of the carbon fibers, aiding the flow of liquid polymers into channels between the carbon fibers. Then, the polymers are cured, solidifying into a 3D structure. No post-curing is needed in LITA 3D printing, which could save a large amount of energy compared to the conventionally fabricated composites requiring tens of hours of post-curing.

The team developed a robotic system that includes a unique printing head and automated robot arm. This customized 3D printer allows the group to print a variety of shapes and structures.

LITA 3D printing could provide many industries with a rapid, energy-efficient method to make composite components in a variety of shapes using a variety of combinations of polymers and fibers.

continuous carbon fiber printed with LITA 3D printing technology
A CT scan shows a cross-sectional image of the composite materials. – Credit: University of Delaware

Featured image: This is a schematic of the new 3D-printing approach devised by UD researchers. “A heater touches and moves along the carbon fibers to generate a dynamic temperature gradient, triggering the dispensed liquid polymer to infuse and cure in the carbon fiber structures,” according to the recently published journal article. – Credit: University of Delaware

Source: University of Delaware


Leggi anche

Un consorzio di cinque ricercatori egiziani ha sviluppato fibre e rinforzi ad alte prestazioni estratti dai sottoprodotti della potatura delle palme da dattero, come fronde e rami di frutta. Questo tipo di fibra non è solo sostenibile, ma garantisce anche bassi costi di produzione, è compatibile con la lavorazione di tessuti e materiali compositi e possiede le proprietà necessarie per essere impiegata nelle auto del futuro…

Leggi tutto…

ICN2 spray-drying

Il gruppo di ricerca Supramolecular NanoChemistry and Materials dell’ICN2 (Spagnaha ampliato il campo di applicazione della tecnica dello spry-drying, la tecnica di essicamento a spruzzo delle sospensioni liquide, dimostrando anche che è un metodo adatto per produrre strutture metallo-organiche (MOF) e strutture organiche covalenti (COF), nonché i loro composti…

Leggi tutto…

Method to produce spoke wheels in FRP

Un gruppo di ricercatori dell’Università Tecnica di Kaiserslautern ha sviluppato un metodo di produzione automatizzata più efficiente di quelli in uso per la produzione di ruote a raggi in plastica fibrorinforzata. Il nuovo metodo non solo è più economico, ma anche a basso impatto ambientale, in quanto non produce scarti…

Leggi tutto…

Kevlar

I ricercatori dell’Università di Harvard, in collaborazione con l’Army Soldat Capabilities Development Command Soldier Center (CCDC SC) e West Point, hanno sviluppato un materiale a base di nanofibre leggero e multifunzionale in grado di proteggere chi lo indossa da temperature estreme e minacce in contesto bellico…

Leggi tutto…

Il marchio cinese TUPLUS ha realizzato una nuova valigia in fibra di carbonio nella sua linea principale. Il modello da 25 pollici, attualmente in vendita solo in Cina, è dotato di gusci anteriori e posteriori realizzati in compositi termoplastici Maezio® di Covestro, che aumentano le prestazioni d’impatto e al contempo elevano il design e lo stile. …

Leggi tutto…