Fibre di carbonio per il più grande reattore nucleare


Nuclear fusion is the energy of the Sun and stars, and there’s a global race to generate it as an alternative green energy source.
But before researchers get started, they need to ensure that their nuclear fusion reactors can withstand the extreme temperatures produced when hydrogen atoms collide to form helium.
To achieve this, engineers from Spanish company CASA Espacio are applying the engineering tech that they’ve used to build components for satellites, as well as rockets like the Ariane 5, Vega, and Soyuz, to the International Thermonuclear Experimental Reactor—the world’s largest nuclear fusion reactor currently being built in France.
“Forces inside ITER present similar challenges to space,” explained Jose Guillamon, head of commercial and strategy at CASA Espacio, in a European Space Agency blog post.
“We can’t use traditional materials like metal, which expand and contract with temperature and conduct electricity. We have to make a special composite material which is durable and lightweight, non-conductive and never changes shape,” he added.
CASA Espacio is currently using its rocket engineering expertise to make the super-strong composite material rings that will be used to hold giant magnets inside ITER in place.
The company has been developing techniques to embed carbon fibres in resin to create lightweight and strong materials. These are suited to withstanding rocket launches and harsh space conditions for over 15 years. The team is applying the techniques used to build these rocket components to building ITER’s compression rings, which are 5 metres in diameter and have 30×30 cm cross-sections.
Once built, ITER will hopefully generate more energy than is required to run it. One kilogram of fuel from the energy-producing powerhouse would technically be the equivalent of 10,000 tons of fossil fuel. The production of this energy would create no side-effects like pollution or radioactive waste.
In recent months both Germany and China hit nuclear fusion milestones, closing the gap on the sustainable energy dream. So if we have the correct composite materials supporting our nuclear fusion reactors, it might not be long before we’ve strengthened the groundwork that lets us tap into the resources of this elusive green energy source.

Photo’s caption: ITER’s Tokamak. Image: ITER Organization


Leggi anche

Con la Legge di Bilancio 2021 viene confermato il Bonus pubblicità anche per i prossimi due anni. Attraverso il credito di imposta si potrà recuperare il 50% di quanto investito in campagne pubblicitarie su quotidiani e riviste, anche online.
Prenota entro il 31 marzo la tua pianificazione per usufruire del credito d’imposta….

Leggi tutto…

The CEM-WAVE Novel CEramic Matrix Composites project produced with MicroWAVE assisted Chemical Vapour Infiltration process for energy-intensive industries project is funded under the SPIRE Work Programme of Horizon 2020. The aim of the CEM-WAVE project is to develop low-cost ceramic matrix composites production technologies in order to encourage the introduction of these materials in highly energy-intensive production processes such as steelmaking….

Leggi tutto…

Saudi Aramco and energy technology firm Baker Hughes have announced the formation of a 50/50 joint venture to develop and commercialize new systems for the petroleum industry based on non-metallic materials. The new company will be called Novel Non-Metallic Solutions Manufacturing (Novel). The new facility will produce non-metallic pipelines, including reinforced thermoplastic pipes (RTP), from composite materials….

Leggi tutto…

Lancaster University researchers have discovered how to create a composite material capable of capturing thermal energy from the sun and storing it for long periods. Implementation of these materials could allow researchers to find other smart and innovative solutions….

Leggi tutto…

University of Illinois composite manufacturing methods

Le ali degli aeroplani, le pale delle turbine eoliche e altre parti di grandi dimensioni vengono in genere create utilizzando la polimerizzazione in massa (bulk polymerization), che richiede l’impiego di enormi autoclavi. La frontal polymerization è un nuovo metodo per la produzione dei compositi che al contrario non necessita di un investimento in grandi strutture. I ricercatori dell’Università dell’Illinois a Urbana-Champaign hanno condotto uno studio, mettendo i due processi a confronto per valutare i rispettivi pro e contro…

Leggi tutto…