Hyundai

Hyundai Creta’s trunk floor: less weight with thermoplastic honeycomb technology

How have Hyundai reduced the weight of the Hyundai Creta’s trunk floor by 20%? Using an innovative thermoplastic composite that combines a sandwich panel of PP honeycomb and GMT composite skin.

EconCore, a specialist in lightweight thermoplastic honeycomb core technology, and DPA Moldados, a tier 1 automotive supplier, have developed a technology unique in design. The thermoplastic is produced continuously while direct lamination of the sandwich skin layers is most often in-line integrated in the highly automated process.

José Carlos Ricciardi, managing director of DPA Moldados, a Brazilian Tier 1 supplier that has partnered with Econcore to develop this lightweight solution, said:

OEMs are calling for weight reduction but unless we are talking about motorsport, they are not quite willing to accept it if the costs are higher than conventional solutions. We had been seeking a way to address this for a while working with thermoplastic composites, and on that journey, we combined forces with EconCore and their German daughter company ThermHex Waben.”

thermoplastic honeycomb trunk floor

The innovation of this technology

EconCore’s solution is so effective because sandwich panels are the most suitable structure when it comes to delivering rigidity at low weight, indeed, trunk floor assemblies of many cars are made of a combination of paper honeycomb and polyurethane / glass fibre composites.

Given the high performance of the honeycomb structure, the use of material is very limited. A low-density honeycomb, when combined with skin layers, delivers a performing sandwich panel. Within Econcore’s technology, the application of skin layers takes place directly as the honeycomb core is made, all within an integrated production process delivering maximum of cost-efficiency.

EconCore also recognise that sustainability within manufacturing processes is currently at a forefront of its consumers’ minds. Tomasz Czarnecki, COO of EconCore, explained:

With regards to recyclability, our process is using thermoplastic honeycomb core and thermoplastic T Research Center,skin layers that on their own can be already based on partly or even fully recycled materials. At the end-of-life our product, and the thermoplastic finishing carpets that automotive parts require for decorations, are recyclable. Upon moulding and integration of the carpets into the sandwich structure, they are not contaminated by other materials such as polyurethanes, so at the end of product’s life, they can be disintegrated and fully recycled.”

Additionally, EconCore’s process uses thermoplastic honeycomb core and thermoplastic skin layers that comprise partly or sometimes fully recycled materials and at the end of product’s life, the part can be easily recycled.

 

More information: www.econcore.com, www.dpamoldados.com.br, www.hyundai.com


Leggi anche

Spherecube, una startup e spinoff dell’Università Politecnica delle Marche, propone di risolvere i problemi legati alla produzione tradizionale dei materiali compositi alto performanti, grazie ad un sistema brevettato di stampa 3D per compositi a base termoindurente e rinforzo continuo, che permette di ridurre gli scarti di produzione, di eliminare i materiali consumabili, di accorciare il tempo di curing e di azzerare gli sfridi di materiale….

Leggi tutto…

BASF, Flex-N-Gate, Toyota and L&L Products were named finalists for the 2023 JEC Innovation Award in the Automobile and Road Transportation – Design Part category with the composite seatback design of the 2022 Toyota Tundra. The goal was to make the vehicle as light and efficient as possible, but also cost-effective, with flexible design and more storage space for the end user….

Leggi tutto…

La perdita di performance della Front Wing dal punto di vista strutturale, nel prototipo della stagione 2022, ha spinto il Team Dynamis PRC a realizzare analisi esplicite ad impatto con i coni delimitanti il tracciato. In questo modo, è possibile valutare come implementare sequenze di laminazione e la geometria di alcuni componenti dell’assieme dell’ala frontale….

Leggi tutto…

The AIMPLAS’s FOREST (advanced lightweight materials for energy-efficient structures) project aims to provide new innovative eco-composites for safe and sustainable transport applications, by combining the development of bio-based polymers and additives, recycled fibers with greater resource efficiency and particles to avoid electromagnetic interference in full alignment with the EU 2030 Climate and Energy Framework….

Leggi tutto…

Hikari, Ranger Compositi e il Laboratorio Polimeri e Compositi del Dipartimento di Ingegneria dell’Università di Ferrara Italia hanno studiato un nuovo materiale composito, denominato “Green Moulding Composite” o GMC, simile a un normale Sheet Moulding Compound o un Bulk Moulding Compound, ma in cui i tradizionali componenti sono stati sostituiti da soluzioni più compatibili con l’ambiente. Tale materiale è stato utilizzato per la realizzazione di battery cover ecosostenibili….

Leggi tutto…