La fibra di carbonio può immagazzinare energia nel telaio di un veicolo

I ricercatori dell’ateneo svedese hanno studiato le molteplici tipologie di fibre di carbonio presenti in commercio e selezionato quelle che hanno delle microstrutture di cristalli dalle buone proprietà elettrochimiche, capaci di funzionare come elettrodi in batterie agli ioni di litio. In particolare, si sono accorti che le fibre composte da cristalli più piccoli e poco orientati, nonostante siano meno rigidi, permettono una buona conduzione dell’energia elettrica. Al contrario, le microstrutture con cristalli più grandi e fortemente orientati hanno sì grandi livelli di rigidità, ma sono al contempo poco adatti al passaggio della corrente elettrica.
La sfida, dunque, è di trovare il giusto compromesso fra rigidità e capacità di conduzione. Grazie a questo studio si potrebbero aprire scenari interessanti per il mondo dell’automobilismo elettrico e anche per quello dell’aviazione a zero emissioni. In un prossimo futuro si potrebbero avere aerei o automobili elettrici alimentati dal loro stesso telaio in fibra di carbonio. Il che significa un notevole risparmio di peso e, quindi, una maggiore autonomia energetica.
Il veicolo, dotato di un telaio in fibra di carbonio, non sarebbe quindi semplicemente un elemento portante, ma fungerà anche da batteria. Sarà anche possibile utilizzare la fibra di carbonio per altri scopi, come la raccolta di energia cinetica, la realizzazione di sensori e conduttori di energia e dati: se tutte queste funzioni fossero parte di un’auto o di un velivolo, potrebbero contribuire a una riduzione del peso del 50%.

Per maggiori approfondimenti visita il sito:
https://www.chalmers.se/en/departments/ims/news/Pages/carbon-fibre-can-store-energy.aspx


Leggi anche

Spherecube, una startup e spinoff dell’Università Politecnica delle Marche, propone di risolvere i problemi legati alla produzione tradizionale dei materiali compositi alto performanti, grazie ad un sistema brevettato di stampa 3D per compositi a base termoindurente e rinforzo continuo, che permette di ridurre gli scarti di produzione, di eliminare i materiali consumabili, di accorciare il tempo di curing e di azzerare gli sfridi di materiale….

Leggi tutto…

BASF, Flex-N-Gate, Toyota and L&L Products were named finalists for the 2023 JEC Innovation Award in the Automobile and Road Transportation – Design Part category with the composite seatback design of the 2022 Toyota Tundra. The goal was to make the vehicle as light and efficient as possible, but also cost-effective, with flexible design and more storage space for the end user….

Leggi tutto…

La perdita di performance della Front Wing dal punto di vista strutturale, nel prototipo della stagione 2022, ha spinto il Team Dynamis PRC a realizzare analisi esplicite ad impatto con i coni delimitanti il tracciato. In questo modo, è possibile valutare come implementare sequenze di laminazione e la geometria di alcuni componenti dell’assieme dell’ala frontale….

Leggi tutto…

The AIMPLAS’s FOREST (advanced lightweight materials for energy-efficient structures) project aims to provide new innovative eco-composites for safe and sustainable transport applications, by combining the development of bio-based polymers and additives, recycled fibers with greater resource efficiency and particles to avoid electromagnetic interference in full alignment with the EU 2030 Climate and Energy Framework….

Leggi tutto…

Hikari, Ranger Compositi e il Laboratorio Polimeri e Compositi del Dipartimento di Ingegneria dell’Università di Ferrara Italia hanno studiato un nuovo materiale composito, denominato “Green Moulding Composite” o GMC, simile a un normale Sheet Moulding Compound o un Bulk Moulding Compound, ma in cui i tradizionali componenti sono stati sostituiti da soluzioni più compatibili con l’ambiente. Tale materiale è stato utilizzato per la realizzazione di battery cover ecosostenibili….

Leggi tutto…