New biomaterial for 3-D printing of tissue-like vascular structures

An international team of scientists have discovered a new material that can be 3-D printed to create tissue-like vascular structures.

In a new study published today in Nature Communications, led by Professor Alvaro Mata at the University of Nottingham and Queen Mary University London, the researchers have described a way to 3-D print graphene oxide with a protein which can organise into tubular structures that replicate some properties of vascular tissue.

Professor Mata said: “This work offers opportunities in biofabrication by enabling simulatenous top-down 3-D bioprinting and bottom-up self-assembly of synthetic and biological components in an orderly manner from the nanoscale. Here, we are biofabricating micro-scale capillary-like fluidic structures that are compatible with cells, exhibit physiologically relevant properties, and have the capacity to withstand flow. This could enable the recreation of vasculature in the lab and have implications in the development of safer and more efficient drugs, meaning treatments could potentially reach patients much more quickly.”

Material with remarkable properties

Self-assembly is the process by which multiple components can organise into larger well-defined structures. Biological systems rely on this process to controllably assemble molecular building-blocks into complex and functional materials exhibiting remarkable properties such as the capacity to grow, replicate, and perform robust functions.

The new biomaterial is made by the self-assembly of a protein with graphene oxide. The mechanism of assembly enables the flexible (disordered) regions of the protein to order and conform to the graphene oxide, generating a strong interaction between them. By controlling the way in which the two components are mixed, it is possible to guide their assembly at multiple size scales in the presence of cells and into complex robust structures.

The use as a 3-D printing bioink

The material can then be used as a 3-D printing bioink to print structures with intricate geometries and resolutions down to 10 um. The research team have demonstrated the capacity to build vascular-like structures in the presence of cells and exhibiting biologically relevant chemical and mechanical properties.

Dr. Yuanhao Wu is the lead researcher on the project, she said: “There is a great interest to develop materials and fabrication processes that emulate those from nature. However, the ability to build robust functional materials and devices through the self-assembly of molecular components has until now been limited. This research introduces a new method to integrate proteins with graphene oxide by self-assembly in a way that can be easily integrated with additive manufacturing to easily fabricate biofluidic devices that allow us replicate key parts of human tissues and organs in the lab.”

Image 1: Close-up of a tubular structure made by simultaneous printing and self-assembling between graphene oxide and a protein. Credit: Professor Alvaro Mata

Image 2: Scanning electron microscopy image depicting endothelial cells growing on the surface of the printed tubular structures. Credit: Professor Alvaro Mata

Source: University of Nottingham


Leggi anche

In base a una ricerca recente, si prevede che le dimensioni del mercato globale dei materiali compositi scenderanno da un totale di 90,6 miliardi di dollari del 2019 a 82,9 miliardi entro il 2021, con un tasso di crescita negativo del 4,4% rispetto al 2019. Ci si aspetta infatti che l’industria dei compositi subirà un calo dovuto all’interruzione della catena di approvvigionamento a causa della pandemia da Covid-19…

Leggi tutto…

La casa automobilistica McLaren continua il suo storico impegno nella riduzione del peso dei veicoli. Come conferma la supercar 765LT, l’azienda punta infatti a ottimizzare efficienza e prestazioni dei suoi modelli ibridi che prevede di lanciare sul mercato nel 2025 grazie a un attento lavoro sui materiali, ricorrendo ai materiali compositi sia per le parti interne sia per quelle esterne della vettura…

Leggi tutto…

Una nuova tecnologia rivoluzionaria sviluppata dal National Composites Center (NCC) e dalla Oxford Brookes University consente ora di separare (o smantellare) le strutture in materiale composito in modo rapido ed economico utilizzando una semplice fonte di calore. Questa ricerca potrebbe trasformare la progettazione, l’uso e il riciclaggio a fine vita di un’ampia gamma di prodotti, tra cui automobili, aeromobili e turbine eoliche…

Leggi tutto…

Grazie a una collaborazione con diversi partner, l’International Lunar Exploration Working Group (ILEWG) sta affrontando una nuova sfida per lo sviluppo di tute spaziali non solo più resistenti ai danneggiamenti, ma anche dotate di un sistema di rilevamento dei danni. A questo fine è stato sviluppato un prototipo che impiega un materiale con fibre aramidiche con proprietà balistiche e di conducibilità …

Leggi tutto…

Il progetto NEMMO ha l’obiettivo di ridurre i costi di manutenzione e aumentare la resa delle turbine mareomotrici e più in generale, di migliorare l’efficacia in termini di costi dell’energia delle maree. Una delle fasi centrali del progetto è la creazione di nuovi rivestimenti e materiali per le pale delle turbine per ridurne l’usura. Proprio in quest’ottica, di recente, sono stati installati una serie di pannelli provenienti da pale per turbine mareomotrici realizzati in fibra di vetro e con un rivestimento in gel-coat che resteranno immersi per sei mesi per determinare il livello di biofouling sulla superficie…

Leggi tutto…