Scientists print low cost radio frequency antenna with graphene ink


Researchers from the University of Manchester, together with BGT Materials Limited, a graphene manufacturer in the United Kingdom, have printed a radio frequency antenna using compressed graphene ink. The antenna performed well enough to make it practical for use in radio-frequency identification (RFID) tags and wireless sensors, the researchers said. Even better, the antenna is flexible, environmentally friendly and could be cheaply mass-produced. The researchers present their results in the journal Applied Physics Letters (“Binder-free Highly Conductive Graphene Laminate for Low Cost Printed Radio Frequency Applications”), from AIP Publishing.
The study demonstrates that printable graphene is now ready for commercial use in low-cost radio frequency applications, said Zhirun Hu, a researcher in the School of Electrical and Electronic Engineering at the University of Manchester.”The point is that graphene is no longer just a scientific wonder. It will bring many new applications to our daily life very soon,” added Kostya S. Novoselov, from the School of Physics and Astronomy at the University of Manchester, who coordinated the project Graphene Gets Inked.
Since graphene was first isolated and tested in 2004, researchers have striven to make practical use of its amazing electrical and mechanical properties. One of the first commercial products manufactured from graphene was conductive ink, which can be used to print circuits and other electronic components.Graphene ink is generally low cost and mechanically flexible, advantages it has over other types of conductive ink, such as solutions made from metal nanoparticles. To make the ink, graphene flakes are mixed with a solvent, and sometimes a binder like ethyl cellulose is added to help the ink stick. Graphene ink with binders usually conducts electricity better than binder-free ink, but only after the binder material, which is an insulator, is broken down in a high-heat process called annealing.
Annealing, however, limits the surfaces onto which graphene ink can be printed because the high temperatures destroy materials like paper or plastic.The University of Manchester research team, together with BGT Materials Limited, found a way to increase the conductivity of graphene ink without resorting to a binder. They accomplished this by first printing and drying the ink, and then compressing it with a roller, similar to the way new pavement is compressed with a road roller.
Compressing the ink increased its conductivity by more than 50 times, and the resulting “graphene laminate” was also almost two times more conductive than previous graphene ink made with a binder.The high conductivity of the compressed ink, which enabled efficient radio frequency radiation, was one of the most exciting aspects of the experiment, Hu said.
The researchers tested their compressed graphene laminate by printing a graphene antenna onto a piece of paper.
The antenna measured approximately 14 centimeters long, and 3.5 millimeter across and radiated radio frequency power effectively, said Xianjun Huang, who is the first author of the paper and a PhD candidate in the Microwave and Communcations Group in the School of Electrical and Electronic Engineering. Printing electronics onto cheap, flexible materials like paper and plastic could mean that wireless technology, like RFID tags that currently transmit identifying info on everything from cattle to car parts, could become even more ubiquitous. Most commercial RFID tags are made from metals like aluminium and copper, Huang said, expensive materials with complicated fabrication processes that increase the cost.”Graphene based RFID tags can significantly reduce the cost thanks to a much simpler process and lower material cost,” Huang said.
The University of Manchester and BGT Materials Limited team has plans to further develop graphene enabled RFID tags, as well as sensors and wearable electronics.


Photo 2’s caption: These scanning electron microscope images show the graphene ink after it was deposited and dried (a) and after it was compressed (b). Compression makes the graphene nanoflakes more dense, which improves the electrical conductivity of the laminate.


Leggi anche

Fin dalla sua fondazione, Impact Acoustic ha perseguito un chiaro obiettivo: sviluppare e produrre soluzioni acustiche di alta qualità che soddisfino i più elevati standard di sostenibilità. Utilizza materiali come il PET e la cellulosa riciclati e, fin dal principio, ha completamente digitalizzato l’intero processo produttivo: all’interno del processo produttivo di Impact Acoustic, Zünd e le sue macchine da taglio automatiche digitali sono state tra i principali investimenti. E l’azienda non se ne è pentita neanche per un istante….

Leggi tutto…

Hitachi High-Tech Analytical Science Corporation, società controllata da Hitachi High-Tech Corporation e specializzata nella produzione di strumenti di analisi e misura, ha lanciato NEXTA DMA200, un nuovo analizzatore termico, con una maggiore resistenza ed efficienza, che verrà utilizzato per lo sviluppo di materiali compositi avanzati e il controllo della qualità del prodotto….

Leggi tutto…

Andy Sutton, ingegnere di produzione specialista nello sviluppo di materiali compositi all’avanguardia, ha lanciato Access Composites, una nuova realtà formativa che ha l’obiettivo di colmare una grave lacuna nel supporto accessibile e nella pianificazione aziendale, insegnando a tutte le organizzazioni, di tutte le dimensioni, come lavorare con i compositi in maniera efficiente …

Leggi tutto…

Gli adesivi acrilici strutturali ARALDITE® 2080 e ARALDITE® 2081 di Huntsman, sono stati sviluppati per garantire un’elevata resistenza e una minore infiammabilità rispetto ai prodotti tradizionali a base metil-metacrilato. Per la maggior parte delle applicazioni, richiedono una preparazione minima della superficie e assicurano buone prestazioni di adesione su diversi substrati (plastica, compositi e metallo) insieme ad una rapida polimerizzazione a temperatura ambiente….

Leggi tutto…

Il peso dei satelliti spaziali può rendere costoso il raggiungimento dell’orbita terrestre bassa (LEO). Se ne sono rese conto le aziende australiane che hanno dovuto fare i conti con i fornitori di lancio che fatturano i carichi utili al chilogrammo. È emersa quindi la necessità di utilizzare strutture più leggere, ma al tempo stesso robuste, per resistere in ambienti spaziali con temperature estreme….

Leggi tutto…