Una miscela di cemento rende gli edifici delle batterie

Le ricerche condotte presso l’Università di Lancaster hanno permesso di sviluppare una mistura di cemento, composta di materiali di scarto di cenere volante e di una soluzione alcalina, che è in grado di condurre energia.

Diversamente dal calcestruzzo già esistente, il quale è solitamente fatto di grafene e di nanotubi di carbonio, la nuova miscela non contiene alcun materiale costoso, ed è addirittura più economico da produrre del cemento Portland, calcestruzzo più comune e quello più utilizzato.

Nella mescolanza, conosciuta come un composito di potassio-geopolimerico (KGP), l’elettricità è condotta per mezzo degli ioni del potassio, i quali saltano attraverso la struttura cristallina, come sostiene il professore della Facoltà di Ingegneria, Mohamed Saafi, leader del progetto presso l’Università di Lancaster:

“Per realizzare il cemento è necessario mischiare la cenere volante con una soluzione alcalina, in questo caso abbiamo utilizzato dell’idrossido di potassio e del silicato di potassio. Quando questi vengono mischiati insieme, si forma un cemento contenente ioni di potassio che si comportano come l’elettrolita.”

Il composito può conservare e scaricare tra 200 e 500W/m2
Per esempio, una casa costruita con gli esterni o i muri fatti di KGP potrebbe immagazzinare elettricità dai pannelli solari di giorno, ed emetterla durante la notte.
Un lampione alto sei metri fatto di KGP sarebbe in grado di catturare abbastanza energia rinnovabile da caricarsi da solo in una sera – solitamente attorno i 700W. Allo stesso tempo la pavimentazione stradale potrebbe garantire energia per monitorare il traffico e diminuire il livello di inquinamento.

Saafi aggiunge: “Stiamo cercando di rendere palazzi e ponti delle batterie per ridurre i costi dell’energia. Al momento abbiamo molte fonti di energia rinnovabile, ma non abbiamo un deposito sufficientemente grande per tutta questa energia.”

Inoltre, la mistura di cemento può essere usata per percepire la pressione meccanica sulle strutture. I cambiamenti di tensione, causate dalle crepe, per esempio, manipolano l’andatura degli ioni di potassio attraverso la struttura, e di conseguenza la conduttività del materiale.
Calcolando la capacità elettrica, i cambiamenti nelle condizioni strutturali degli edifici, non è necessario installare ulteriori sensori.

Ora le ricerche sono portate avanti per ottimizzare le capacità performative delle miscele di KGP, e investigando l’utilizzo delle tecniche della stampa 3D per creare diverse forme a partire dall’innovativo cemento.


Leggi anche

Scarti di latte dall’industria casearia e latte scaduto dalla grande G.D.O sono i nuovi ingredienti per produrre mattoni isolanti. L’innovazione dell’azienda che fonda le sue radici in Sardegna propone la soluzione alla dispersione termica degli edifici. Una novità per il mercato della bio-edilizia che dà il benvenuto a mattoni in bio composito di fibra di latte. …

Leggi tutto…

Il fenomeno di carbonatazione del calcestruzzo e della successiva ossidazione delle barre di armatura è la causa principale del degrado e dell’abbandono delle opere in calcestruzzo armato. ANAS sta provvedendo a salvaguardare il patrimonio già esistente e a prolungare il periodo di efficienza dei ponti e dei viadotti….

Leggi tutto…

Secondo un nuovo rapporto della European Pultrusion Technology Association (EPTA), l’uso di componenti pultrusi potrebbe migliorare la sostenibilità, ridurre i costi energetici, accelerare l’installazione e consentire nuovi concetti di progettazione e componenti multifunzionali. Il rapporto di EPTA, intitolato “Opportunità per materiali compositi pultrusi nel mercato ferroviario”, esamina i vantaggi nell’adozione di materiali compositi nel settore ferroviario e il crescente numero di applicazioni per componenti pultrusi…

Leggi tutto…

Il calcestruzzo rinforzato con fibra di vetro è ampiamente usato nell’industria delle costruzioni fornendo un materiale leggero, forte e duraturo che può essere utilizzato per produrre pannelli, rivestimenti antipioggia per facciate di edifici, coperture di pareti di tunnel, ed altre strutture architettoniche. Il fissaggio con bigHead aumenta la libertà del progettista senza compromettere la resistenza e la qualità, minimizzando la fatica ed il tempo sul luogo di posa….

Leggi tutto…

Il tunnel di Pajares (25 km) ad alta velocità che collegherà il Principato delle Asturie al centro della Spagna dimostra come grazie ad una soluzione innovativa in materiali compositi costituita da un sistema di rivestimento e ancoraggio composito è possibile canalizzare delle grandi quantità di acqua senza rischi di infiltrazioni

Leggi tutto…