Wood fibres in electrodes for durable, sustainable wearables

Wood fibres have been used by researchers in Sweden to create a new class of stronger and lower-cost electrodes for even lighter and long-lasting flexible electronics and wearables.

A team from KTH Royal Institute of Technology reported that it created the new composite material by combining wood cellulose nano fibrils (CNF) – or extremely small filaments known as nanorods – with MXene, a two-dimensional nanoscale conductive material. The wood fibrils provide mechanical strength otherwise lacking in MXenes, and they allow the electrodes to become flexible.

Our results will eventually help with realizing the development of flexible multifunctional energy storage devices, that is, supercapacitors and batteries, at a lower cost and with higher device-base performance,” said Max Hamedi, a researcher in wood cellulose at KTH who in recent years also developed a soft battery made of aerogel foam from wood pulp.

According to Mr. Hamedi, the electrodes can be used in any energy storage device, but the most valuable application would be in flexible batteries and supercapacitors for wearable sensor devices. The research was reported recently in the journal, Advanced Materials.

The electrode will provide both the strength and capacitive charge storage properties, which will enable them to last much longer in electrochemical devices,” Hamedi said. “We hope these properties will help to make sustainable multifunctional batteries and supercapacitors.”

The composite strength of the material is a result of a blend of geometry and chemistry. The cellulose nano fibrils bind to the MXene flakes, but they also interlock in the MXenes in their own random networks. “If we for example have the wrong geometrical match between the size of the flakes and the length of the CNF rods, then flakes would not be locked into the random network and we would have a much weaker composite.”

Source: Phys.org

Photo on the top: Close-up view of wood and MXene composite, with 40 percent wood cellulose nano fibrils (CNF). Credit: KTH The Royal Institute of Technology


Leggi anche

Gli adesivi acrilici strutturali ARALDITE® 2080 e ARALDITE® 2081 di Huntsman, sono stati sviluppati per garantire un’elevata resistenza e una minore infiammabilità rispetto ai prodotti tradizionali a base metil-metacrilato. Per la maggior parte delle applicazioni, richiedono una preparazione minima della superficie e assicurano buone prestazioni di adesione su diversi substrati (plastica, compositi e metallo) insieme ad una rapida polimerizzazione a temperatura ambiente….

Leggi tutto…

Il peso dei satelliti spaziali può rendere costoso il raggiungimento dell’orbita terrestre bassa (LEO). Se ne sono rese conto le aziende australiane che hanno dovuto fare i conti con i fornitori di lancio che fatturano i carichi utili al chilogrammo. È emersa quindi la necessità di utilizzare strutture più leggere, ma al tempo stesso robuste, per resistere in ambienti spaziali con temperature estreme….

Leggi tutto…

The structural acrylic adhesives ARALDITE®2080 and ARALDITE®2081 from Huntsman have been developed to ensure high strength and lower flammability than traditional methyl methacrylate-based products. For most applications, they require minimal surface preparation and ensure good adhesion performance on different substrates (plastic, composites and metal) along with rapid curing at room temperature….

Leggi tutto…

Un gruppo di ricercatori dell’Università del Queensland del Sud, sotto la guida del dottor Wahid Ferdous, sta studiando come sostituire le traverse ferroviarie in legno per i ponti con un nuovo materiale costituito da fibre composite e materiali di scarto. Il governo dello stato del Queensland e il produttore di traverse in cemento Austrak hanno finanziato il progetto attraverso una borsa di ricerca per l’industria….

Leggi tutto…

Analizzando le proprietà dei nuovi ritardanti di fiamma per materiali compositi, i ricercatori del laboratorio Advanced Fibers dell’Empa, centro svizzero per lo studio dei materiali avanzati, sotto la guida di Sabyasachi Gaan, hanno elaborato una tecnica che permette di rendere recuperabili le resine epossidiche, il cui limite di riutilizzo è intrinseco alla natura di materiali termoindurenti, ossia polimeri altamente reticolati che, una volta induriti, non possono essere sottoposti nuovamente a fusione senza carbonizzarsi….

Leggi tutto…