300.000 sterline per sviluppare carrelli ferroviari più leggeri e durevoli


The investigation of novel materials and manufacturing processes is being carried out by the University’s Institute for Railway Research, which has been awarded funding of almost £300,000 as part of an EU-backed project to develop lighter, more reliable, more comfortable and quieter rolling stock. RUN2RAIL is the overall title of the new project. It is an element of the EU’s multi-faceted Shift2Rail programme, which fosters research and innovation in European railways. The Huddersfield Institute is participating in three of the packages, is the lead institution for the project to investigate optimised materials for running gear and it will work with the Politecnico di Milano (Milan, Italy). Professor Iwnicki explained that it was the Institute’s expert knowledge of the design of railway bogies and their dynamic behaviour that was being harnessed for the work package. At a kick-off meeting in Milan, it was decided to investigate the use of carbon fibre composites, which would enable bogie frames to be constructed layer-by-layer by robots. “You can have any number of curves or shapes and therefore build up the shape you actually want, whereas with a steel frame there are only a certain number of shapes you can make,” said Professor Iwnicki. “Also, carbon fibre is much lighter and you can put the material just where you want it, which makes it lighter still.” Another strand of investigation will be the use of additive manufacturing – or 3D printing – done with lasers and steel powders. This technology is becoming more mature and components, such as axle boxes and brackets for brakes are now candidates for this process. Although one engineering firm has produced a railway bogie that includes carbon fibre leaf springs, the RUN2RAIL project could lead to unprecedented usage of novel materials in rolling stock construction. For the moment, wheels will probably still be made from conventional steels, however. The RUN2RAIL project is now under way and is due to be completed by August 2019.


Leggi anche

The growing demand for composite components increasingly requires efficient and cost-effective manufacturing solutions. Massivit recently launched the 10000 unit and its additively manufactured mandrels, useful for forming hollow composite components with smooth and regular internal surfaces. The article illustrates the advantages of printing with water-breakable material and the possible economic savings….

Leggi tutto…

La crescente richiesta di componenti compositi necessita sempre più di soluzioni di produzione efficienti e convenienti. Massivit ha lanciato di recente l’unità 10000 e i suoi mandrini realizzati con produzione additiva, utili per formare componenti compositi cavi con superfici interne lisce e regolari. Nell’articolo vengono illustrati i vantaggi della stampa con materiale frangibile in acqua e i possibili risparmi economici….

Leggi tutto…

The European CIRCE project (Circular Economy Model for Carbon Fiber Prepregs), born from the collaboration of five Italian companies and financed under the LIFE program (LIFE ENV/IT/00155), has studied how to reuse the scraps of carbon fiber prepreg to produce structural components such as car parts, brake discs, toe caps for safety shoes and more….

Leggi tutto…

Il progetto europeo CIRCE (Circular Economy Model for Carbon Fibre Prepregs), nato dalla collaborazione di cinque aziende italiane e finanziato nell’ambito del programma LIFE (LIFE ENV/IT/00155), ha studiato come riutilizzare gli sfridi dei prepreg in fibra di carbonio per produrre componenti strutturali come parti auto, dischi freno, puntali per scarpe antinfortunistiche e non solo….

Leggi tutto…

The use of CFRP can significantly reduce CO2 emissions in transportation, including airplanes and automobiles. However, a lot of CO2s is released during the production of CFRP, and most used and waste materials end up in landfills. With the growing market of CFRP, there is a strong demand for the development of recycling technologies. Toyota Industries have developed technology that aligns recycled carbon fibers from used CFRP into a uniform, consistent yarn, adapting its well-established cotton spinning methods to carbon fiber….

Leggi tutto…