The 3D Printing revolution in mandrel production



As the demand for composite parts increases, so does the need for more efficient and cost-effective production solutions. Massivit recently launched the 10000 machines, and its additively produced mandrels are ideal for forming hollow composite parts with smooth interior surfaces. We will discuss the advantages of printing with water breakable material, as well as the cost savings that can be realised.

Mandrels & Composite Parts

Mandrels are typically cylindrical tools or devices around which a workpiece can be shaped and find usefulness in the manufacture of composites parts where they act as sacrificial tools around which composite material is placed and cured before the mandrels are removed. They are used in the manufacture of tubular components and parts such as general pipes, bike frames, exhaust pipes and construction air ducts.

There are many ways to make mandrels, but the most common method is to start with a piece of round stock that has been cut to the desired length. This stock is then put into a lathe and machined to the desired shape. In some cases, multiple pieces of stock may be welded together to create a larger mandrel, which once machined to the correct shape, may be heat-treated to improve strength and durability.

Traditional methods of making mandrels are relatively problematic as they require a lot of time and effort to make. The process is often complicated, and it can be difficult to get the mandrels to the right precise size and shape. Conventional methods also often involve the use of a significant amount of manual labor, which can be time-consuming and result in inconsistency between different mandrels.


Advantages of 3D Printing

Massivit — a leading provider of large-format 3D printing solutions — has developed a proprietary printing process for producing lightweight, yet strong and durable mandrels. This represents a highly innovative solution to produce composite parts, offering significant advantages over traditional manufacturing methods and enabling the production of high-quality composite parts with reduced lead times and lower costs.

3D Printed Wash-Away Core


Customized Carbon End Part












One of the key advantages of using 3D printing or Additive Manufacturing (AM) to make mandrels is that it allows for much more complex designs than traditional machining methods. With AM, there are no constraints on the geometric shapes that can be produced, meaning that mandrels can be made with very intricate designs. Additionally, AM can be used to produce mandrels made from materials that are difficult or impossible to machine using traditional methods. This opens a whole new range of possibilities for mandrel designs and means that they can be tailor-made to suit the specific needs of a particular application.

Also, whereas traditional mandrel manufacture may require multiple parts to be assembled to make the final mandrel shape, Additive Manufacturing allows production of a single monolithic mandrel saving time and money.


The Massivit 10000

Mandrels can be digitally produced on the Massivit 10000 AM system. The Massivit 10000 is an industrial-grade 3D printer for fast and efficient production of mandrels, large tools, and molds. The machine uses proprietary Cast In Motion (CIM) technology in combination with Massivit’s patented Gel Dispensing Printing (GDP) method, which allows direct casting of the mold into a 3D printed sacrificial shell. 

To achieve this, the Massivit 10000 utilizes a dual-head system, ultra-fast patented technology, and for the mandrels uses water-breakable material that deconstructs in water. All these allow manufacturers to produce complex mandrels within a matter of days instead of weeks.


Water Breakable Material

At the heart of the AM mandrel building process from Massivit is the water-breakable material, perfectly suited to the production of mandrels. Obviously, one of the most notable features of the material is that it is water breakable, crumbling in water without dissolving leaving the water uncontaminated and ready for reuse. This allows the mandrel to be easily removed from the final product after production, so the demolding process is quick as well.

The material is also lightweight (making it easy to handle and transport during the production process); strong and durable (allowing it to be used for a variety of mandrel applications); easy to use, (so it can be easily molded into the desired shape and size for the mandrel); environmentally friendly, (as it does not release any harmful chemicals or pollutants into the environment); and speedy, with mandrels printing in a matter of hours.

Additionally, providing high quality interior surfaces of these hollow complex components is not a problem at all. An exceptionally smooth internal surface for parts like air ducts can be achieved


A Real Revolution

Mandrels made using AM and more specifically via the Massivit 10000 have the potential to revolutionize the way composite parts and components are made. Mandrels produced using AM offer several advantages over traditionally manufactured mandrels. They are lighter, more precise, and can be easily customized to fit the specific needs of each part. This results in faster production times and a reduction in waste. In addition, mandrels made using AM can be produced from advanced materials that are stronger, more durable, and able to withstand higher temperatures, and as we have seen water breakable simplifying removal.

This enables the production of composite parts that are of higher quality, more reliable and have a longer lifespan. The future of composite part manufacturing is bright with the advent of additively manufactured mandrels, and this technology is poised to revolutionize the industry.

Leggi anche

La crescente richiesta di componenti compositi necessita sempre più di soluzioni di produzione efficienti e convenienti. Massivit ha lanciato di recente l’unità 10000 e i suoi mandrini realizzati con produzione additiva, utili per formare componenti compositi cavi con superfici interne lisce e regolari. Nell’articolo vengono illustrati i vantaggi della stampa con materiale frangibile in acqua e i possibili risparmi economici….

Leggi tutto…

The European CIRCE project (Circular Economy Model for Carbon Fiber Prepregs), born from the collaboration of five Italian companies and financed under the LIFE program (LIFE ENV/IT/00155), has studied how to reuse the scraps of carbon fiber prepreg to produce structural components such as car parts, brake discs, toe caps for safety shoes and more….

Leggi tutto…

Il progetto europeo CIRCE (Circular Economy Model for Carbon Fibre Prepregs), nato dalla collaborazione di cinque aziende italiane e finanziato nell’ambito del programma LIFE (LIFE ENV/IT/00155), ha studiato come riutilizzare gli sfridi dei prepreg in fibra di carbonio per produrre componenti strutturali come parti auto, dischi freno, puntali per scarpe antinfortunistiche e non solo….

Leggi tutto…

The use of CFRP can significantly reduce CO2 emissions in transportation, including airplanes and automobiles. However, a lot of CO2s is released during the production of CFRP, and most used and waste materials end up in landfills. With the growing market of CFRP, there is a strong demand for the development of recycling technologies. Toyota Industries have developed technology that aligns recycled carbon fibers from used CFRP into a uniform, consistent yarn, adapting its well-established cotton spinning methods to carbon fiber….

Leggi tutto…

Spherecube, una startup e spinoff dell’Università Politecnica delle Marche, propone di risolvere i problemi legati alla produzione tradizionale dei materiali compositi alto performanti, grazie ad un sistema brevettato di stampa 3D per compositi a base termoindurente e rinforzo continuo, che permette di ridurre gli scarti di produzione, di eliminare i materiali consumabili, di accorciare il tempo di curing e di azzerare gli sfridi di materiale….

Leggi tutto…