Stanford, creata una batteria in grafene e alluminio



Stanford scientists make graphene-aluminum battery that charges quickly and lasts over 7,000 cycles

Researchers at Stanford University developed a new battery technology based on graphene and aluminum. The stanford team claims that their aluminum battery has a number of advantages over lithium: it’s flexible, can be charged in a minute instead of hours and is very durable. it’s also cheaper and non-reactive (meaning compromising it will not result in sparks like lithium batteries).

The scientists used graphene foam (made by creating a metal foam, then catalyzing graphene formation on its surface) as cathode material and aluminum foil as the anode. The electrolyte the researchers used was a solution of aluminum trichloride dissolved in an organic solvent that also contained chlorine. While this granted better performance (7,500 cycles, much more than the 1,000 expected from a Li-ion battery), the voltage provided by an aluminum-ion battery is only about half of that what you’d get from a lithium-ion cell. Also, the overall power density (the amount of power you can store in a battery in relation to its size) is still unsufficient

Photo’s captation: graphene alluminium battery


Leggi anche

La supply chain dell’Additive Manufacturing in scena dal 28 al 29 settembre 2023 nella cornice del Museo Alfa Romeo per la XI edizione del Convegno/Exhibition RM FORUM…

Leggi tutto…

L’energia eolica è una delle risorse di energia rinnovabile più utilizzate. Le pale delle turbine eoliche, tuttavia, essendo realizzate in resina rinforzata con fibre di vetro o carbonio, sono difficili da riciclare a fine vita e spesso vengono smaltite in discarica. Per risolvere il problema, un’azienda italiana, esperta nella produzione di componenti edilizi prefabbricati, e una polacca, specializzata nel riciclo di rifiuti, hanno collaborato allo sviluppo di un procedimento di recupero degli scarti di vetroresina delle pale eoliche che vengono poi incorporati in miscele di cemento per dare vita ad un blocco da costruzione ecosostenibile. …

Leggi tutto…

Secondo un rapporto di AMI Consulting, divulgato a marzo 2023, la richiesta globale (in peso) di materiali compositi per la produzione di pale eoliche sarebbe aumentata in media del 14,7% all’anno, tra il 2017 e il 2022, con picchi di crescita soprattutto in Asia e Nord America. Lo studio della società di consulenza stima inoltre che il valore mondiale del mercato delle pale in composito abbia ormai superato i cinque miliardi di euro. …

Leggi tutto…

Grazie alle loro proprietà tecniche e al peso ridotto, i compositi vengono impiegati in quasi tutti i settori industriali e la plastica rinforzata con fibra di vetro (GFRP) costituisce la maggior parte di questo mercato. La necessità di sviluppare un processo economico per il riciclaggio dei rifiuti contenenti fibre pregiate ha spinto Longworth a lanciare EMPHASIZING, un programma di ricerca, finanziato da Innovate UK, che esplora la circolarità dei compositi in fibra di vetro….

Leggi tutto…

Attualmente l’Europa produce più del 70% di tutta l’energia eolica utilizzata sul pianeta. Tuttavia, la crescita esponenziale che questa fonte rinnovabile ha registrato a partire dagli anni Novanta pone oggi un importante problema ambientale: alla fine della loro vita utile le turbine eoliche finiscono in discarica o incenerite. Questa è una sfida complessa per l’industria, che deve affrontare la rimozione di grandi quantità di rifiuti….

Leggi tutto…