Thin heat shield for superfast aircraft

The world of aerospace increasingly relies on carbon fibre reinforced polymer composites to build the structures of satellites, rockets and jet aircraft. But the life of those materials is limited by how they handle heat.

A team of FAMU-FSU College of Engineering researchers from Florida State University’s High-Performance Materials Institute is developing a design for a heat shield that better protects those extremely fast machines. Their work will be published in the November edition of Carbon.

 “Right now, our flight systems are becoming more and more high-speed, even going into hypersonic systems, which are five times the speed of sound,” said Professor Richard Liang, director of HPMI. “When you have speeds that high, there’s more heat on a surface. Therefore, we need a much better thermal protection system.”

Buckypaper to build the heat shield

The team used carbon nanotubes, which are linked hexagons of carbon atoms in the shape of a cylinder, to build the heat shields. Sheets of those nanotubes are also known as “buckypaper”, a material with incredible abilities to conduct heat and electricity that has been a focus of study at HPMI. By soaking the buckypaper in a resin made of a compound called phenol, the researchers were able to create a lightweight, flexible material that is also durable enough to potentially protect the body of a rocket or jet from the intense heat it faces while flying.

Existing heat shields are often very thick compared to the base they protect”, said Ayou Hao, a research faculty member at HPMI.

The test: the advantages of nanotubes

This design lets engineers build a very thin shield, like a sort of skin that protects the aircraft and helps support its structure. After building heat shields of varying thicknesses, the researchers put them to the test.

One test involved applying a flame to the samples to see how they prevented heat from reaching the carbon fibre layer they were meant to protect. After that, the researchers bent the samples to see how strong they remained.

They found the samples with sheets of buckypaper were better than control samples at dispersing heat and keeping it from reaching the base layer. They also stayed strong and flexible compared to control samples made without protective layers of nanotubes.

That flexibility is a helpful quality. The nanotubes are less vulnerable to cracking at high temperatures compared to ceramics, a typical heat shield material. They are also lightweight, which is helpful for engineers who want to reduce the weight of anything on an aircraft that doesn’t help the way it flies.

Source: Florida State University


Leggi anche

L’Università del Queensland ha installato nei propri laboratori una fornace in grado di riscaldare i materiali fino a quasi 3000 gradi Celsius, allo scopo di sviluppare componenti per la fiorente industria spaziale australiana. Il forno, primo del suo genere in Australia, consentirà ai ricercatori di realizzare la prossima generazione di materiali compositi ad altissima temperatura per il volo ipersonico….

Leggi tutto…

Il peso dei satelliti spaziali può rendere costoso il raggiungimento dell’orbita terrestre bassa (LEO). Se ne sono rese conto le aziende australiane che hanno dovuto fare i conti con i fornitori di lancio che fatturano i carichi utili al chilogrammo. È emersa quindi la necessità di utilizzare strutture più leggere, ma al tempo stesso robuste, per resistere in ambienti spaziali con temperature estreme….

Leggi tutto…

Axiom Space, ideatore della prima stazione orbitale commerciale, ha annunciato una collaborazione con Prada, luxury brand milanese fondato nel 1913, per la creazione delle tute destinate agli astronauti della missione Artemis III della NASA. Sarà il primo sbarco sulla Luna con equipaggio dai tempi dell’Apollo 17, che risale al 1972….

Leggi tutto…

Con l’obiettivo di promuovere l’adozione di tecnologie verdi nel settore aeronautico, riducendo conseguentemente, le emissioni di carbonio. La NASA ha deciso di stanziare cinquanta milioni di dollari per finanziare quattordici organizzazioni che si occuperanno dello sviluppo di processi di produzione e materiali compositi avanzati per le strutture degli aerei…

Leggi tutto…

Il Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM di Stade (Germania) sta sperimentando nuovi materiali e soluzioni di automazione per produrre velivoli più leggeri ed efficienti. Queste tecnologie rappresentano un passo decisivo sulla strada della sostenibilità, dato che ogni chilogrammo di peso risparmiato in un aereo passeggeri comporta una diminuzione del consumo di cherosene fino a 120 kg all’anno….

Leggi tutto…