Compositi a matrice ceramica per l’efficienza dei motori


Lighter, faster, more efficient. Whenever you advance a technology, that’s the goal. As NASA looks to transform the commercial aircraft of the future, efficient engines are at the heart of it all.
To achieve the goal of better engines on future aircraft, researchers at NASA Glenn are investigating promising advances in high-temperature materials that can be used to make turbine engine components.
These materials, called ceramic-matrix composites or CMCs, are lighter, stronger and can withstand the demanding forces of the extremely high temperatures generated in the core of jet engines. CMCs are in a position to replace the nickel-based super alloy metals in today’s aircraft engines.
In general, the hotter an engine runs, the better the fuel efficiency. Over the years, engines have been able to run hotter because metal parts were treated with thermal barrier coatings. But there is a limit to what the coatings can tolerate. CMCs, on the other hand, can withstand temperatures up to 2700˚ F and beyond with the help of specially designed ceramic coatings called environmental barrier coatings.
“We want to understand how CMCs and protective coatings can not only withstand high heat, but also environmental particle hazards such as dust, sand and volcanic ash,” says NASA Glenn Materials Engineer Valerie Wiesner. “This is important because, as aircraft engine temperatures increase to promote fuel efficiency, sand, when it’s ingested into an engine, can actually melt into glass and potentially cause power loss or failure.” Moving next generation aircraft toward greater operating efficiency will depend, in large part, on advances in engine technology and materials manufacturing capabilities. NASA Glenn researchers are exploring the 3D printing and testing of complex materials like CMCs to see if they can withstand the high temperature environment of future aircraft engines.
This research is conducted in support of NASA’s Transformative Aeronautics Concepts Program.


Leggi anche

Con l’obiettivo di promuovere l’adozione di tecnologie verdi nel settore aeronautico, riducendo conseguentemente, le emissioni di carbonio. La NASA ha deciso di stanziare cinquanta milioni di dollari per finanziare quattordici organizzazioni che si occuperanno dello sviluppo di processi di produzione e materiali compositi avanzati per le strutture degli aerei…

Leggi tutto…

Il Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM di Stade (Germania) sta sperimentando nuovi materiali e soluzioni di automazione per produrre velivoli più leggeri ed efficienti. Queste tecnologie rappresentano un passo decisivo sulla strada della sostenibilità, dato che ogni chilogrammo di peso risparmiato in un aereo passeggeri comporta una diminuzione del consumo di cherosene fino a 120 kg all’anno….

Leggi tutto…

La supply chain dell’Additive Manufacturing in scena dal 28 al 29 settembre 2023 nella cornice del Museo Alfa Romeo per la XI edizione del Convegno/Exhibition RM FORUM…

Leggi tutto…

Plataine, fornitore di soluzioni di AI e Industrial IIoT per l’ottimizzazione della produzione, ha intrapreso una collaborazione con l’Advanced Technologies Lab for Aerospace Systems (ATLAS), parte del National Institute for Aviation Research (NIAR) della Wichita State University, per esplorare le possibilità di evoluzione digitale dei processi di produzione di compositi avanzati, grazie all’analisi dei dati….

Leggi tutto…

Un consorzio composto dalle PMI ÉireComposites e Plasma Bound e dall’Università tecnologica di Dublino ha ottenuto un finanziamento governativo di 2,5 milioni di euro per il progetto Ad Astra, che ha l’obiettivo di promuovere l’adozione di materiali compositi leggeri in diverse fasi del processo produttivo dell’industria aerospaziale. Il lavoro sarà sostenuto nell’ambito del DTIF (DISRUPTIVE TECHNOLOGIES INNOVATION FUND) Call 5, guidato dal governo irlandese e da Enterprise Ireland….

Leggi tutto…