Continuous Fiber Injection Process increases strength of plastic, metals and ceramics

Continuous Fiber Injection Process (CFIP) technology works with additive manufacturing to strengthen plastics, metals, and ceramics, creating complex-shaped-composites and high-strength joints. This technology has been developed and patented by Eurecat Centro Tecnológico de Catalunya (Eurecat Technology Centre of Catalonia, Barcelona, Spain), a private, nonprofit R&D organization with 11 facilitiesbrings together the expertise of 650 professionals to serve more than a thousand companies. CFIP enables parts manufactured by 3D printing to be reinforced with continuous carbon fibers, increasing their strength while reducing weight.

The advantages of the new technology

How explains Marc Crescenti, head of Eurecat’s Advanced Simulation line and lead developer: “This is a new post-processing system based on injecting continuous reinforcement fibers, such as carbon fiber, into parts manufactured by 3D printing or other types of technology. The fact that we strengthen the part by means of a post-process method, and not during the manufacturing process itself as other technologies on the market do, brings truly disruptive advantages.”

In more detail, these advantages include freedom in placing the reinforcement fibers and following complex routes created digitally. This also provides a way to actualize the organic shapes output by generative design tools. “This means we can align [fibers] in the most efficient directions and further enhance mechanical performance,” Crescenti adds. CFIP can also strengthen other materials, including plastics, metals, and ceramics, he explains, “which makes it possible, for example, to manufacture a titanium part strengthened with continuous carbon fibers.”

CFIP also affords the option of integrally joining different parts with fiber continuity between them, thus providing very high-performance joints. This allows for multi-material and multi-process structures by selecting the most efficient material and process based on the requirements in each area of the structure. This technological solution has been used in several case studies for aerospace, automotive and sporting goods applications. One example is a brake pedal that Eurecat has developed by integrated joining of different materials and processes.

Eurecat CFIP brake pedal
Brake pedal made with continuous carbon fiber by Eurecat using its Continuous Fiber Injection Process (CFIP). Source: Eurecat

 

CFIP has been recognized with multiple awards, the last one is the JEC Composites Innovation Awards 2020 in the additive manufacturing category.

 

About Eurecat

Eurecat Centro Tecnológico de Catalunya (Eurecat Technology Centre of Catalonia, Barcelona, Spain) is a private, nonprofit R&D organization with 11 facilitiesbrings together the expertise of 650 professionals to serve more than a thousand companies. Eurecat is involved in 160 R&D projects, both national and international, with high strategic value and has 88 patents, seven spin-off technology companies and 11 R&D facilities in Catalonia.

In particular, Eurecart takes part in European Union-funded Clean Sky 2 program. and now has 18 Clean Sky projects awarded on the basis of competitive submissions in response to calls for proposals.

 

More information www.eurecat.org


Leggi anche

In occasione dell’evento JEC Forum ITALY – organizzato da JEC Group in collaborazione con Assocompositi – del prossimo 6-7 giugno 2023 a Bologna, Leonardo Spa terrà un intervento all’interno della sessione “Nuovi modelli per l’innovazione e nuove tecnologie”. Disponibile ora l’abstract dello speech!…

Leggi tutto…

Nell’ottica di rendere più sostenibile l’industria aerospaziale, i compositi a sandwich possono sostituire i termoindurenti tradizionali nella creazione di parti strutturali degli aerei, senza rinunciare alla resistenza in ambienti estremi o in situazioni di carico imprevisto. EconCore sta lavorando con Airbus, Fraunhofer e il Politecnico della Danimarca (DTU) alla realizzazione di un timone sostenibile per un aeromobile in compositi a nido d’ape….

Leggi tutto…

Oggi parlare di aviazione sostenibile, vuol dire porsi l’obiettivo di ridurre il peso strutturale dei velivoli, limitando al contempo anche i consumi e le emissioni. Per raggiungere tale scopo è opportuno sostituire le parti metalliche con equivalenti in compositi, che possiedono elevati rapporti di resistenza e rigidità rispetto al peso. NLR (Netherlands Aerospace Centre) sta esplorando le potenzialità della produzione additiva su larga scala di materiali termoplastici rinforzati con fibre….

Leggi tutto…

De Havilland Dash 8, il nuovo aeromobile della Universal Hydrogen, si è alzato per la prima volta in volo a inizio marzo del 2023. Uno dei suoi motori a turbina era stato sostituito da un propulsore elettrico a combustibile a idrogeno di classe megawatt, che includeva un’elica in fibra di carbonio con profilo alare a cinque pale del diametro di 2,3 metri….

Leggi tutto…

Dopo la cancellazione del decollo dello scorso 15 febbraio, decisa per via di un’anomalia nel sistema del primo stadio e del mancato invio dei segnali d’accensione per gli SRB-3, JAXA intende effettuare un nuovo lancio entro la fine di marzo. H3 è un progetto cruciale per l’industria giapponese, si tratta del primo missile nipponico progettato in 20 anni e rappresenta un progetto radicalmente nuovo rispetto al suo predecessore di base….

Leggi tutto…