Elettronica a lunga durata nello spazio


A team of scientists at NASA’s Glenn Research Center in Cleveland recently completed a technology demonstration that could enable new scientific missions to the surface of Venus. The team demonstrated the first prolonged operation of electronics in the harsh conditions found on Venus.
“With further technology development, such electronics could drastically improve Venus lander designs and mission concepts, enabling the first long-duration missions to the surface of Venus,” said Phil Neudeck, lead electronics engineer for this work.
Current Venus landers can only operate on the planet’s surface for a few hours due to the extreme atmospheric conditions. The surface temperature on Venus is nearly 860 degrees Fahrenheit, which is hotter than most ovens, and the planet has a high-pressure carbon dioxide atmosphere. Because commercial electronics don’t work in this environment, the electronics on past Venus landers have been protected by thermal and pressure-resistant vessels. These vessels only last a few hours, and they add substantial mass and expense to a mission.
To overcome these challenges, the Glenn team developed and implemented extremely durable silicon carbide semiconductor integrated circuits. They then electrically tested two of these integrated circuits in the Glenn Extreme Environments Rig (GEER), which can precisely simulate the conditions expected on Venus’ surface. The circuits withstood the Venus surface temperature and atmospheric conditions for 521 hours – operating more than 100 times longer than previously demonstrated Venus mission electronics.
“We demonstrated vastly longer electrical operation with chips directly exposed – no cooling and no protective chip packaging – to a high-fidelity physical and chemical reproduction of Venus’ surface atmosphere,” Neudeck said. “And both integrated circuits still worked after the end of the test.”
Earlier this year, the team demonstrated nearly identical silicon carbide integrated circuits for more than 1,000 hours at 900 degrees Fahrenheit in Earth-atmosphere oven testing. The integrated circuits were originally designed to operate in hot regions of fuel-efficient aircraft engines.
“This work not only enables the potential for new science in extended Venus surface and other planetary exploration, but it also has potentially significant impact for a range of Earth relevant applications, such as in aircraft engines to enable new capabilities, improve operations, and reduce emissions,” said Gary Hunter, principle investigator for Venus surface electronics development.

For more information on Glenn, visit: www.nasa.gov/glenn

Caption picture nr.2
Integrated circuit before (above) and after (below) testing in Venus atmospheric conditions
Credits: NASA


Leggi anche

AIMPLAS e TNO hanno concluso il progetto ELIOT, che prevede una revisione completa delle tecnologie di riciclaggio per compositi e biocompositi. Durante i test sono stati valutati dodici metodi applicati a sei diversi materiali. La solvolisi e la pirolisi sono risultate le alternative più promettenti per la produzione su larga scala. La pirolisi, tuttavia, ha dimostrato di avere costi economici ed ambientali maggiori rispetto alla solvolisi, dal momento che genera il 17% in più di anidride carbonica e sviluppa il doppio del calore….

Leggi tutto…

In occasione dell’evento JEC Forum ITALY – organizzato da JEC Group in collaborazione con Assocompositi – del prossimo 6-7 giugno 2023 a Bologna, Leonardo Spa terrà un intervento all’interno della sessione “Nuovi modelli per l’innovazione e nuove tecnologie”. Disponibile ora l’abstract dello speech!…

Leggi tutto…

Nell’ottica di rendere più sostenibile l’industria aerospaziale, i compositi a sandwich possono sostituire i termoindurenti tradizionali nella creazione di parti strutturali degli aerei, senza rinunciare alla resistenza in ambienti estremi o in situazioni di carico imprevisto. EconCore sta lavorando con Airbus, Fraunhofer e il Politecnico della Danimarca (DTU) alla realizzazione di un timone sostenibile per un aeromobile in compositi a nido d’ape….

Leggi tutto…

Oggi parlare di aviazione sostenibile, vuol dire porsi l’obiettivo di ridurre il peso strutturale dei velivoli, limitando al contempo anche i consumi e le emissioni. Per raggiungere tale scopo è opportuno sostituire le parti metalliche con equivalenti in compositi, che possiedono elevati rapporti di resistenza e rigidità rispetto al peso. NLR (Netherlands Aerospace Centre) sta esplorando le potenzialità della produzione additiva su larga scala di materiali termoplastici rinforzati con fibre….

Leggi tutto…

De Havilland Dash 8, il nuovo aeromobile della Universal Hydrogen, si è alzato per la prima volta in volo a inizio marzo del 2023. Uno dei suoi motori a turbina era stato sostituito da un propulsore elettrico a combustibile a idrogeno di classe megawatt, che includeva un’elica in fibra di carbonio con profilo alare a cinque pale del diametro di 2,3 metri….

Leggi tutto…