Ford sviluppa uno snodo a sospensione posteriore in fibra di carbonio

L’industria automobilistica mondiale sta spingendo verso obiettivi di massa più severi per soddisfare le sempre più stringenti normative sulle emissioni e la richiesta da parte del cliente di estese gamme di veicoli da alte prestazioni. Ford ha scelto di avviare il ciclo di sviluppo scegliendo un componente di sospensione più leggera in fibra di carbonio. Questa parte composita di recente sviluppo si è dimostrata appropriata per un veicolo con segmento C ad alte prestazioni. Un equilibrio delicato e perfetto ottenuto tra il materiale e la selezione del processo ha portato ad una riduzione dei tempi produzione a soli 5 minuti. Questo risultato è paragonabile, o nella maggior parte dei casi, supera i tempi di elaborazione delle tecnologie di produzione precedenti.
Un importante traguardo eseguito grazie alla sinergia tra Ford Motor Company, Gestamp, WMG, the University of Warwick e GRM Consulting. Il progetto, durato 2 anni, intitolato Composite Lightweight Automobile Suspension System (CLASS) ha visto l’evolversi della tecnologia dei materiali compositi sia all’interno del mondo accademico che nell’industria aerospaziale per raggiungere le principali pratiche di ingegneria automobilistica e compensare l’aumento di peso inerente ai veicoli elettrici e autonomi. La complessità del comportamento dei materiali compositi rimane ancora una sfida da superare per l’industria automobilistica nel suo complesso. Sebbene una grande quantità di ricerche sia stata dedicata alla comprensione dei materiali compositi sia nell’industria che nel mondo accademico, l’arte della predizione del comportamento del materiale composito è ancora agli inizi.
Inoltre, durante lo sviluppo del progetto, il design della componente composita si è evoluto a un design multi-materiale, sfidando i team di produzione e ottimizzazione. Le indagini iniziali basate su vari articoli indicavano che l’idea di un nodo leggero composito poteva essere realizzata da un singolo materiale Sheet Moulding Compound (SMC). Tuttavia, una lunga tempistica ingegneristica ha portato il team di progettazione verso un sistema multi-materiale; dove strati di prepreg davano le necessarie proprietà meccaniche planari e lo stampaggio su SMC permetteva i complicati dettagli geometrici e l’irrigidimento fuori piano. L’approccio di combinare il prepreg uni e bi-assiale con SMC ha suggerito che il componente composito potesse raggiungere gli obiettivi di resistenza meccanica, rigidità e deformazione. Altre sfide progettuali hanno comportato l’introduzione di ulteriori innovazioni, pur restando all’interno del design, senza influire sulla produzione. Il progetto è stato finalizzato solo dopo il completamento di una simulazione estesa e di un lavoro sperimentale. Ciò ha ottimizzato e perfezionato il design per soddisfare la durabilità degli OEM e gli obiettivi NVH. Il risparmio di peso finale raggiunto dal progetto è pari ad almeno il 30% con un potenziale potenzialmente eccezionale del 50%, con pari funzionalità.
Presso il Ford Research and Innovation Centre di Dearborn negli Stati Uniti è stato sviluppato il processo di produzione di stampaggio a compressione in grado di produrre in serie questo snodo di sospensione dalla forma complessa e ad alta resistenza. Questa esperienza ha aiutato il progetto a ottimizzare i parametri di processo in modo da ottenere le massime prestazioni meccaniche e la precisione geometrica.


Leggi anche

Il progetto europeo CIRCE (Circular Economy Model for Carbon Fibre Prepregs), nato dalla collaborazione di cinque aziende italiane e finanziato nell’ambito del programma LIFE (LIFE ENV/IT/00155), ha studiato come riutilizzare gli sfridi dei prepreg in fibra di carbonio per produrre componenti strutturali come parti auto, dischi freno, puntali per scarpe antinfortunistiche e non solo….

Leggi tutto…

The use of CFRP can significantly reduce CO2 emissions in transportation, including airplanes and automobiles. However, a lot of CO2s is released during the production of CFRP, and most used and waste materials end up in landfills. With the growing market of CFRP, there is a strong demand for the development of recycling technologies. Toyota Industries have developed technology that aligns recycled carbon fibers from used CFRP into a uniform, consistent yarn, adapting its well-established cotton spinning methods to carbon fiber….

Leggi tutto…

Spherecube, una startup e spinoff dell’Università Politecnica delle Marche, propone di risolvere i problemi legati alla produzione tradizionale dei materiali compositi alto performanti, grazie ad un sistema brevettato di stampa 3D per compositi a base termoindurente e rinforzo continuo, che permette di ridurre gli scarti di produzione, di eliminare i materiali consumabili, di accorciare il tempo di curing e di azzerare gli sfridi di materiale….

Leggi tutto…

BASF, Flex-N-Gate, Toyota and L&L Products were named finalists for the 2023 JEC Innovation Award in the Automobile and Road Transportation – Design Part category with the composite seatback design of the 2022 Toyota Tundra. The goal was to make the vehicle as light and efficient as possible, but also cost-effective, with flexible design and more storage space for the end user….

Leggi tutto…

La perdita di performance della Front Wing dal punto di vista strutturale, nel prototipo della stagione 2022, ha spinto il Team Dynamis PRC a realizzare analisi esplicite ad impatto con i coni delimitanti il tracciato. In questo modo, è possibile valutare come implementare sequenze di laminazione e la geometria di alcuni componenti dell’assieme dell’ala frontale….

Leggi tutto…