Graphene-reinforced carbon fibre

Graphene to reinforce carbon fibers and reduce the production cost

Using a mix of computer simulations and laboratory experiments, a team of researchers at the Penn State University (Pennsylvania) demonstrated that adding small amounts of graphene to the production process of carbon fibers both reduces the production cost and strengthens the fibers. According to the researchers, this new way of creating carbon fibers could lead to using these lightweight, high-strength materials to improve safety and reduce the cost of producing cars.

 

Graphene could help to reduce the production cost of carbon fibers

Even though carbon fibers have really nice features, they would make a car far more expensive” with the way carbon fibers are manufactured now, said Adri van Duin, professor of mechanical and chemical engineering, Penn State. “If you can get these properties easier to manufacture then you can make cars significantly lighter, lower the cost of them and make them safer.

Carbon fiber sells for about $15 per pound today, and the team, which includes researchers from Penn State, the University of Virginia and Oak Ridge National Laboratory, in collaboration with industry partners Solvay and Oshkosh, wants to reduce that to $5 per pound by making changes to the complex production process. A lower production cost will increase carbon fiber’s potential applications, including in cars. Further, the team’s research may lower the cost of producing other types of carbon fibers, some of which sell for up to $900 per pound today.

 

More strength and stiffness with graphene

Currently most carbon fibers are produced from a polymer known as polyacrylonitrile, or PAN, and it is pretty costly,” said Małgorzata Kowalik, researcher in Penn State’s Department of Mechanical Engineering. “The price of PAN makes up about 50% of the production cost of carbon fibers.”

PAN is used to create 90% of carbon fibers found in the market today, but its production requires an enormous amount of energy. First, PAN fibers have to be heated to 200-300 degrees Celsius to oxidize them. Next, they must be heated to 1,200-1,600 degrees Celsius to transform the atoms into carbon. Finally, they have to be heated to 2,100 degrees Celsius so that the molecules are aligned properly. Without this series of steps, the resulting material would lack its needed strength and stiffness.

The team reported in a recent issue of Science Advances that adding trace amounts of graphene — only 0.075% concentration by weight — to the first stages of this process allowed the team to create a carbon fiber that had 225% greater strength and 184% greater stiffness than the conventionally made PAN-based carbon fibers.

 

Computer simulations to understand the chemical reaction of graphene and carbon fibre

The team gleaned insight into the chemical reactions taking place through a series of small- and large-scale computer simulations conducted on several supercomputers, the Institute for Computational and Data Sciences (ICDS) Advanced CyberInfrastructure; the National Science Foundation (NSF)-funded CyberLAMP, which is maintained by ICDS; and the NSF-funded Extreme Science and Engineering Discovery Environment (XSEDE), a multi-institute network of supercomputers and related resources. They also studied the properties of each material using laboratories in Penn State’s Materials Research Institute (MRI).

The flat structure of graphene helps to align PAN molecules consistently throughout the fiber, which is needed in the production process. Further, at high temperatures graphene edges have a natural catalytic property so that “the rest of PAN condenses around these edges,” said van Duin.

With the new knowledge gained from this study, the team is exploring ways to further use graphene in this production process using cheaper precursors, with a goal of cutting out one or more of the production steps altogether, thereby reducing costs even more.

 

Featured Image: Screenshot of computer simulation and materials characterization result. Credit: Margaret Kowalik and Adri Van Duin

Source: Penn State University


Leggi anche

L’Absolute Scanner AS1 è costruito su un’architettura hardware modulare innovativa che gli permette di funzionare come sensore 3D sia per un laser tracker che per un braccio di misura portatile, entrambi i quali possono agire come sistema di riferimento per i dati di scansione che l’AS1 acquisisce….

Leggi tutto…

Il centro spagnolo di tecnologia delle materie plastiche Aimplas partecipa a un progetto per lo sviluppo di nuovi compositi termoplastici a fibra lunga con proprietà eco-compatibili che riducono il peso delle batterie dei veicoli elettrici del 50-70%….

Leggi tutto…

Per la nuova stagione 2022 gli ingegneri del Dynamis PRC hanno adottato un nuovo processo produttivo per la realizzazione delle appendici aerodinamiche che prende ispirazione dal mondo Formula 1….

Leggi tutto…

Il veicolo dimostrativo Revolution VLR – con una lunghezza di 18,5 m, una larghezza di 2,8 m e un’altezza di 3,8 m – incorpora le ultime tecnologie dei settori automobilistico e ferroviario. Il veicolo passeggeri a base composita è progettato per semplificare l’estensione delle reti ferroviarie esistenti del Regno Unito e consentire la riapertura delle linee storiche….

Leggi tutto…

Collaborazione tra le due aziende per sviluppare una nuova soluzione ibrida in plastica-composito per la produzione di una cassetta degli attrezzi per camion. La soluzione ibrida di SABIC combina la resina Stamax con inserti compositi termoformati utilizzando un nastro unidirezionale in PP rinforzato con fibra di vetro della cinese Qiyi Tech….

Leggi tutto…