How do novel racing yachts go so fast?

In the past few years, the world of yacht racing has been completely changed thanks of the introduction of hydrofoil-supported catamarans, known as “foilers”. These special yachts, similar to high-performance aircraft, can achieve speeds of up to 50 knots, which is far faster than the wind propelling them.

An F50 catamaran preparing for the Sail GP series recently even broke this barrier, reaching an incredible speed of 50.22 knots (57.8mph) only powered by the wind. This was achieved in a wind of just 19.3 knots (22.2mph). F50s are 15-metre-long, 8.8-metre-wide hydrofoil catamarans propelled by rigid sails. These yachts can go so fast thanks of the overcoming of the drag force, caused by two primary physical mechanisms.

The first mechanism is friction. As the water flows past the hull, a microscopic layer of water is effectively attached to the hull and is pulled along with the yacht. A second layer of water then attaches to the first layer, and the sliding or shearing between them creates friction. On the outside of this is a third layer, which slides over the inner layers creating more friction, and so on. Together, these layers form the boundary layer – and it’s the shearing of the boundary layer’s molecules against each other that creates frictional drag.

A yacht also makes waves as it pushes the water around and under the hull from the bow (front) to the stern (back) of the boat. The waves form two distinctive patterns around the yacht (one at each end), known as Kelvin Wave patterns. These waves, which have the same yacht’s speed, are very energetic. This creates drag on the boat known as the wave-making drag, which is responsible for around 90% of the total drag. As the yacht accelerates to faster speeds, these waves get higher and longer. These two effects combine to produce “hull speed”, which is the fastest the boat can travel: in conventional single-hull yachts it is very slow, for example one of the F50’s size has a hull speed of around 12 mph.

A way to reduce both the frictional and wave-making drag and overcome this hull-speed limit by building a yacht with hydrofoils. Hydrofoils are small, underwater wings. These act in the same way as an aircraft wing, creating a lift force which acts against gravity, lifting the yacht upwards so that the hull is clear of the water. The other innovation that helps boost the speed of racing yachts is the use of rigid sails. The power available from traditional sails to drive the boat forward is relatively small, limited by the fact that the sail’s forces have to act in equilibrium with a range of other forces, and that fabric sails do not make an ideal shape for creating power. Rigid sails form a much more efficient shape than traditional sails, effectively giving the yacht a larger engine and more power. As the yacht accelerates from the driving force of these sails, it produces “apparent wind”, formed by true wind and the wind generated by the yacht movement. If there is enough true wind combined with this apparent wind, then significant force and power can be generated from the sail to propel the yacht, so it can easily sail faster than the wind speed itself. The combined effect of reducing the drag and increasing the driving power results in a yacht that is far faster than those of even a few years ago.

But all of this would not be possible without one further advance: materials. The yacht must have a low mass, and the hydrofoil itself must be very strong. To achieve the required mass, strength and rigidity using traditional boat-building materials such as wood or aluminium would be very difficult. This is where modern advanced composite materials such as carbon fibre come in. Production techniques optimising weight, rigidity and strength allow the production of structures that are strong and light enough to produce incredible yachts like the F50.

Source: Techxplore


Leggi anche

Coatyarn, azienda leader nella produzione di coated yarns, è specializzata nella creazione di filati rivestiti ad alta tecnologia, adatti ad una molteplicità di applicazioni in settori che includono il rinforzo strutturale in edilizia ed il mondo tecnico-industriale a più ampio respiro. La nostra filosofia green, volta al rispetto dell’ambiente e delle risorse, trova applicazione concreta nella ricerca di materiali innovativi e sostenibili da introdurre nel sistema di Produzione: le ultime ricerche hanno portato allo sviluppo di un filato Flame Retardant totalmente Halogen free e di filati ricoperti con polimeri altamente performanti come il PPS ed il PVDF….

Leggi tutto…

L’uso del grafene nel processo di stratificazione composito per infusione sottovuoto ha reso il kayak più leggero del 30% e, quindi, più facile da caricare e trasportare. Ne ha inoltre aumentato sia la resistenza agli urti che la rigidità, riducendo il rischio di rottura delle aree critiche. Anche lo smorzamento delle vibrazioni ha migliorato l’esperienza dell’utente….

Leggi tutto…

L’utilizzo di materiali compositi nella produzione di attrezzature utilizzate dagli atleti disabili per le competizioni sportive ha migliorato notevolmente le performance delle strumentazioni stesse. Nel gennaio 2019 Matsunaga, un produttore di sedie a rotelle coinvolto nel Tokyo Support Project, ha lanciato una sfida alle aziende specializzate nello sviluppo di materiali compositi, affinché contribuissero alla realizzazione della prima sedia a rotelle al mondo per il badminton agonistico con telaio composito. …

Leggi tutto…

Negli ultimi anni la produzione degli sci non ha subito cambiamenti rivoluzionari, ma il miglioramento dei materiali utilizzati ha reso il livello delle prestazioni sempre più alto. La leggerezza degli sci da freeride o freetouring, rinforzati in fibra di carbonio con un’anima in legno, è una qualità particolarmente apprezzata durante la salita, ma ha iniziato a rivelare i suoi svantaggi sulla neve ghiacciata, dal momento che fa fatica a gestire le vibrazioni. …

Leggi tutto…

Il Gruppo Reglass, oltre 100 anni di attività, da più di 40 opera nel campo dei materiali compositi avanzati della fibra di carbonio. Resine polimeriche e fibre di carbonio vengono trasformate in fogli di pre-impregnato (prepreg) per produrre tubi altamente performanti. A supporto, l’attività di ricerca e sviluppo che si svolge nei laboratori aziendali in collaborazione con Università e centri di ricerca….

Leggi tutto…