Identifying the sensitivities of transverse cracking in composites

Fiber-reinforced composites are widely used in aerospace and other high-tech industries. Understanding how their microstructure and the strength of the fiber-matrix interfaces affect their failure properties can lead to manufacturing stronger materials. A recent study at the University of Illinois at Urbana-Champaign developed a model to identify the sensitivities of transverse cracking, one of the key failure processes present in composite laminates, on details of the composite microstructure.

Composite laminates used in aerospace application are typically made of layers of carbon fibers with varying orientations embedded in epoxy. For example, the composite laminate can be composed of a carbon/epoxy layer with the fibers oriented in the 90-degree direction sandwiched between two 0-degree plies. The fibers are each about seven microns in diameter, or about one-seventh of the thickness of a human hair.

Transverse cracking of composite laminate
Left: Optical image of a composite laminate used in the transverse failure experiments. Right: Representative image of a transverse crack spanning the 90 ply. As apparent from this optical image, the transverse cracks extend primarily along fiber/matrix interfaces. Credit: University of Illinois

We know from experiments that cracks propagate transversely across the 90-degree plane, then stop when they reach the interfaces with the 0-degree plies. So we developed a method that allows us to simulate hundreds of fibers in a realistic system and study how the failure response is affected if we change the location of a single fiber or of many fibers, or the strength of the interface,” said Philippe Geubelle, a professor in the Department of Aerospace Engineering.

In this new method, optical micrographs are taken of the 90-degree ply and the location of all of the fibers are extracted to construct a realistic computational model of the ply. Similar studies have been limited to tens of fibers.

With the special finite element method we have developed to simulate the transverse cracking of the 90-degree ply, we can simulate hundreds of fibers,” Geubelle said. “The most we’ve done so far is close to 3,000 fibers. Because the crack propagates primarily along the fiber-matrix interfaces, our model emphasizes the cohesive failure of these interfaces,” he said. “In addition, we have developed the ability to extract efficiently the sensitivity of the failure event with respect to the properties of the microstructure. These properties include the location and size of the fibers, and the failure properties of the fiber-matrix interfaces. We can also compute the sensitivity of the failure event with respect to the parameters (average, standard deviation, etc.) that define the distribution of these microstructural parameters.”

The model is validated against experimental observations performed in Prof. Nancy Sottos’s group in the Department of Materials Science and Engineering at the University of Illinois.

Of course, you could get these sensitivities experimentally, with every conceivable variation, to see what the effect is on the failure event,” Geubelle said. “To do this numerically is much more efficient.”

The work is supported by a grant from the Center of Excellence on Integrated Multiscale Modeling with funds from the Air Force Research Laboratory and the Air Force Office of Scientific Research, in collaboration with researchers from Johns Hopkins University and the University of California, Santa Barbara.

 

Source: University of Illinois – Aerospace Engineering


Leggi anche

De Havilland Dash 8, il nuovo aeromobile della Universal Hydrogen, si è alzato per la prima volta in volo a inizio marzo del 2023. Uno dei suoi motori a turbina era stato sostituito da un propulsore elettrico a combustibile a idrogeno di classe megawatt, che includeva un’elica in fibra di carbonio con profilo alare a cinque pale del diametro di 2,3 metri….

Leggi tutto…

Dopo la cancellazione del decollo dello scorso 15 febbraio, decisa per via di un’anomalia nel sistema del primo stadio e del mancato invio dei segnali d’accensione per gli SRB-3, JAXA intende effettuare un nuovo lancio entro la fine di marzo. H3 è un progetto cruciale per l’industria giapponese, si tratta del primo missile nipponico progettato in 20 anni e rappresenta un progetto radicalmente nuovo rispetto al suo predecessore di base….

Leggi tutto…

Negli ultimi anni l’esplorazione dello spazio ha subito un’intensa accelerazione e la miniaturizzazione dei componenti è stata la chiave che ha portato allo sviluppo di satelliti come CubeSats, con dimensioni e peso sempre più ridotti. Nell’ottica di migliorare questi dispositivi, la NASA e il centro aerospaziale tedesco DLR hanno progettato vele solari, con il boma in materiali compositi, che rivoluzionano completamente il concetto di mobilità spaziale. …

Leggi tutto…

Il settore aeronautico è in piena transizione verso una mobilità più verde, più efficiente e più sicura. In questo contesto, l’utilizzo di materiali termoplastici in alternativa ai compound termoindurenti offre numerosi vantaggi sia in termini di resistenza e leggerezza, che dal punto di vista dell’impatto ambientale, dal momento che questi ultimi possono essere rilavorati e riciclati in modo più efficiente….

Leggi tutto…

L’ossatura dei moduli di servizio dei satelliti realizzati nell’impianto di Torino di Thales Alenia Space richiede spesso l’impiego di strutture in materiali compositi che devono essere tagliati con estrema precisione. Qui entra in gioco Zund che ha fornito a Thales Alenia Space un sistema di taglio digitale automatico e altamente produttivo, in grado di lavorare un’ampia varietà di materiali, tra i quali spiccano i compositi…

Leggi tutto…