Identifying the sensitivities of transverse cracking in composites

Fiber-reinforced composites are widely used in aerospace and other high-tech industries. Understanding how their microstructure and the strength of the fiber-matrix interfaces affect their failure properties can lead to manufacturing stronger materials. A recent study at the University of Illinois at Urbana-Champaign developed a model to identify the sensitivities of transverse cracking, one of the key failure processes present in composite laminates, on details of the composite microstructure.

Composite laminates used in aerospace application are typically made of layers of carbon fibers with varying orientations embedded in epoxy. For example, the composite laminate can be composed of a carbon/epoxy layer with the fibers oriented in the 90-degree direction sandwiched between two 0-degree plies. The fibers are each about seven microns in diameter, or about one-seventh of the thickness of a human hair.

Transverse cracking of composite laminate
Left: Optical image of a composite laminate used in the transverse failure experiments. Right: Representative image of a transverse crack spanning the 90 ply. As apparent from this optical image, the transverse cracks extend primarily along fiber/matrix interfaces. Credit: University of Illinois

We know from experiments that cracks propagate transversely across the 90-degree plane, then stop when they reach the interfaces with the 0-degree plies. So we developed a method that allows us to simulate hundreds of fibers in a realistic system and study how the failure response is affected if we change the location of a single fiber or of many fibers, or the strength of the interface,” said Philippe Geubelle, a professor in the Department of Aerospace Engineering.

In this new method, optical micrographs are taken of the 90-degree ply and the location of all of the fibers are extracted to construct a realistic computational model of the ply. Similar studies have been limited to tens of fibers.

With the special finite element method we have developed to simulate the transverse cracking of the 90-degree ply, we can simulate hundreds of fibers,” Geubelle said. “The most we’ve done so far is close to 3,000 fibers. Because the crack propagates primarily along the fiber-matrix interfaces, our model emphasizes the cohesive failure of these interfaces,” he said. “In addition, we have developed the ability to extract efficiently the sensitivity of the failure event with respect to the properties of the microstructure. These properties include the location and size of the fibers, and the failure properties of the fiber-matrix interfaces. We can also compute the sensitivity of the failure event with respect to the parameters (average, standard deviation, etc.) that define the distribution of these microstructural parameters.”

The model is validated against experimental observations performed in Prof. Nancy Sottos’s group in the Department of Materials Science and Engineering at the University of Illinois.

Of course, you could get these sensitivities experimentally, with every conceivable variation, to see what the effect is on the failure event,” Geubelle said. “To do this numerically is much more efficient.”

The work is supported by a grant from the Center of Excellence on Integrated Multiscale Modeling with funds from the Air Force Research Laboratory and the Air Force Office of Scientific Research, in collaboration with researchers from Johns Hopkins University and the University of California, Santa Barbara.

 

Source: University of Illinois – Aerospace Engineering


Leggi anche

Con l’obiettivo di promuovere l’adozione di tecnologie verdi nel settore aeronautico, riducendo conseguentemente, le emissioni di carbonio. La NASA ha deciso di stanziare cinquanta milioni di dollari per finanziare quattordici organizzazioni che si occuperanno dello sviluppo di processi di produzione e materiali compositi avanzati per le strutture degli aerei…

Leggi tutto…

Il Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM di Stade (Germania) sta sperimentando nuovi materiali e soluzioni di automazione per produrre velivoli più leggeri ed efficienti. Queste tecnologie rappresentano un passo decisivo sulla strada della sostenibilità, dato che ogni chilogrammo di peso risparmiato in un aereo passeggeri comporta una diminuzione del consumo di cherosene fino a 120 kg all’anno….

Leggi tutto…

La supply chain dell’Additive Manufacturing in scena dal 28 al 29 settembre 2023 nella cornice del Museo Alfa Romeo per la XI edizione del Convegno/Exhibition RM FORUM…

Leggi tutto…

Plataine, fornitore di soluzioni di AI e Industrial IIoT per l’ottimizzazione della produzione, ha intrapreso una collaborazione con l’Advanced Technologies Lab for Aerospace Systems (ATLAS), parte del National Institute for Aviation Research (NIAR) della Wichita State University, per esplorare le possibilità di evoluzione digitale dei processi di produzione di compositi avanzati, grazie all’analisi dei dati….

Leggi tutto…

Un consorzio composto dalle PMI ÉireComposites e Plasma Bound e dall’Università tecnologica di Dublino ha ottenuto un finanziamento governativo di 2,5 milioni di euro per il progetto Ad Astra, che ha l’obiettivo di promuovere l’adozione di materiali compositi leggeri in diverse fasi del processo produttivo dell’industria aerospaziale. Il lavoro sarà sostenuto nell’ambito del DTIF (DISRUPTIVE TECHNOLOGIES INNOVATION FUND) Call 5, guidato dal governo irlandese e da Enterprise Ireland….

Leggi tutto…