InductICE: new ice protection system for composite wings

EU-funded InductICE project developed a new ice protection system for composite wings. The aim of the project started in July 2016 and ended in December 2019 was to reach an efficient, modular and lightweight electromagnetic induction-based ice protection system, which uniformly heats the wing leading edge surface.

 

The dangerous consequences of icing of aircraft

Formation of ice on aircraft occurs under certain conditions when supercooled water freezes on impact with the surface of an aircraft. Actually, it is a serious problem, because even a very thin layer or small patches of ice on the leading edge and upper surface of the wings can increase drag and impair lift, also impacting aircraft safety.

To contrast this problem, InductICE project developed a completely new technology to meet the challenge with lower power consumption, greater efficiency and lower system weight.

 

Current Ice protection systems

Until recently, there were two main types of ice protection systems: those to prevent ice from forming (anti-icing), and those to remove it, once formed (de-icing). Thermal approaches heat the surface via electrical resistance or by redirecting a portion of the hot air from the motor’s compressor. Mechanical systems used for de-icing separate the ice by deformation of the surface on which it accumulates. More recently, some systems have integrated more than one method to both protect against ice formation and remove it, once formed.

 

The new kid on the ice protection block

EU funding of the InductICE project has supported development and testing of a completely new ice protection system for composite wings.

As project coordinator Irma Villar explains: “The InductICE solution uses electromagnetic induction to heat up a thin metal mesh integrated into the composite wings of an aircraft. This contactless heating applied directly in the external layer where the ice is created enhances efficiency significantly relative to heat conduction through the various composite layers or redirection of compressor heat.”

ice protection systemFurthermore, since the system is not part of the wing structure itself, maintenance costs are reduced, and compared to a mechanical solution, there is no mechanical fatigue in the structure. Villar continues: “In addition to evaluating the efficiency of each module, we also assessed the global installation impact of the technology. We designed the system based on the compromise between installation weight and mean/peak power consumption of the de-icing/anti-icing technology.”

 

A hot new idea taxies for take-off

A completely new concept in ice protection technology, the electromagnetic induction system has undergone significant and strenuous testing in an icing wind tunnel, resulting in a series of changes to the prototype. The leading edge of the wing with its concave shape created a challenge in the geometry of the induction coils. In fact, design modifications, manufacturing and testing have been a completely manual process. As the team advances the system’s technology readiness level, InductICE’s multiple benefits promise enhanced safety for passengers and increased competitiveness for EU aviation.

 

This project, developed by Airbus Defence and Space, and IKERLAN, was funded under Horizon2020.

Featured image: © Irma Villar


Leggi anche

Sustainable Composites logo

Una nuova iniziativa per affrontare il problema del riutilizzo e del riciclo dei materiali compositi alla fine del loro ciclo di vita prende il via nel Regno Unito, sotto la guida del National Composites Centre (NCC) e del Center for Process Innovation (CPI).
Da questa iniziativa, denominata Sustainable Composites, dovrebbe nascere la prossima generazione di materiali compositi eco-compatibili, grazie a una partnership tra industria, mondo accademico e governo che sfrutterà la ricerca e lo sviluppo tecnologico dei compositi nel Regno Unito …

Leggi tutto…

La Graduate School of Engineering della Tohoku University, la Graduate School of Information Sciences e NEC Corporation stanno lavorando insieme a un sistema integrato in grado di accelerare lo sviluppo della plastica rinforzata con fibra di carbonio (CFRP) per strutture aeronautiche…

Leggi tutto…

CETMA - Thermal imaging camera applied to an induction welding process

Il progetto europeo DEWTECOMP, coordinato dal CETMA, ha come obiettivo lo sviluppo di un sistema di saldatura a induzione finalizzato a ottenere un innovativo ed efficiente sistema di adesione strutturale delle parti di rinforzo (quali fazzoletti, zeppe, raccordi) ai telai strutturali per realizzare una struttura perimetrale altamente integrata (DSS-Door Surround Structure)…

Leggi tutto…

NUST MISIS presentation of aluminum matrix composites

Gli scienziati dei materiali dell’Università Nazionale di Scienza e Tecnologia MISIS, in Russia, hanno presentato una nuova tecnologia per la produzione di compositi a matrice di alluminio da nuove materie prime, polveri composite per la stampa 3D di componenti per aeromobili e autovetture. Il nuovo metodo aumenta del 40% l’uniformità delle proprietà e la durezza dei compositi ottenuti rispetto agli analoghi prodotti in maniera standard…

Leggi tutto…

Access panel in recycled thermoplastic composites

All’interno del progetto TPC-Cycle recycling, è stato sviluppato un pannello di accesso per aeromobili in materiale composito termoplastico riciclato ed è stato testato con successo in volo. Il pannello è stato ottenuto utilizzando un nuovo processo di riciclaggio, che ha permesso di rendere il componente più leggero e meno costoso rispetto ai pannelli standard…

Leggi tutto…