La conduttività dei compositi


A technology that could enhance both the electrical and thermal conductivity of conventional composite materials has been developed thanks to a collaboration between the University of Surrey, University of Bristol and the aerospace company Bombardier.
Carbon fibre composites, composed of reinforcing carbon fibres within a plastic, have revolutionised industries that demand strong, yet light materials. However, their application has been hindered by inherently poor electrical and thermal conductivities.
The researchers demonstrated that by growing nanomaterials, specifically carbon nanotubes, on the surface of the carbon fibres it is possible to impart these necessary properties.
The research, conducted at the University of Surrey’s Advanced Technology Institute (ATI) and the University of Bristol’s Advanced Composite Centre for Innovation and Science (ACCIS), shows off the potential of a carbon fibre reinforced plastic to be made multifunctional, while still maintaining its structural integrity.
Novel functionality including sensors, energy harvesting lighting and communication antennae can now be integrated into the structure of the composite to usher in a new era in composite technology.
Professor Ravi Silva, Director of the ATI and Head of the Nanoelectronics Centre (NEC) at the University of Surrey said: “In the future, carbon nanotube modified carbon fibre composites could lead to exciting possibilities such as energy harvesting and storage structures with self-healing capabilities. We are currently working on such prototypes and have many ideas including the incorporation of current aerospace/satellite technology in automotive design.”
Dr Thomas Pozegic, Research Associate in ACCIS and formerly a PhD student at the University of Surrey, explained: “The aerospace industry still relies on metallic structures, in the form of a copper mesh, to provide lightning strike protection and prevent static charge accumulation on the upper surface of carbon fibre composites because of the poor electrical conductivity. This adds weight and makes fabrication with carbon fibre composites difficult. The material that we have developed utilises high-quality carbon nanotubes grown at a high density to allow electrical transport throughout the composite material.”
Dr Ian Hamerton, Reader in Polymers and Composite Materials in ACCIS, commented: “The research has shown that carbon nanotubes can significantly enhance the thermal conductivity of carbon fibre composites. This will have wide-reaching benefits in the aerospace industry, from enhancing de-icing solutions to minimising the formation of fuel vapours at cruising altitudes.


Leggi anche

In occasione dell’evento JEC Forum ITALY – organizzato da JEC Group in collaborazione con Assocompositi – del prossimo 6-7 giugno 2023 a Bologna, Leonardo Spa terrà un intervento all’interno della sessione “Nuovi modelli per l’innovazione e nuove tecnologie”. Disponibile ora l’abstract dello speech!…

Leggi tutto…

Nell’ottica di rendere più sostenibile l’industria aerospaziale, i compositi a sandwich possono sostituire i termoindurenti tradizionali nella creazione di parti strutturali degli aerei, senza rinunciare alla resistenza in ambienti estremi o in situazioni di carico imprevisto. EconCore sta lavorando con Airbus, Fraunhofer e il Politecnico della Danimarca (DTU) alla realizzazione di un timone sostenibile per un aeromobile in compositi a nido d’ape….

Leggi tutto…

Oggi parlare di aviazione sostenibile, vuol dire porsi l’obiettivo di ridurre il peso strutturale dei velivoli, limitando al contempo anche i consumi e le emissioni. Per raggiungere tale scopo è opportuno sostituire le parti metalliche con equivalenti in compositi, che possiedono elevati rapporti di resistenza e rigidità rispetto al peso. NLR (Netherlands Aerospace Centre) sta esplorando le potenzialità della produzione additiva su larga scala di materiali termoplastici rinforzati con fibre….

Leggi tutto…

De Havilland Dash 8, il nuovo aeromobile della Universal Hydrogen, si è alzato per la prima volta in volo a inizio marzo del 2023. Uno dei suoi motori a turbina era stato sostituito da un propulsore elettrico a combustibile a idrogeno di classe megawatt, che includeva un’elica in fibra di carbonio con profilo alare a cinque pale del diametro di 2,3 metri….

Leggi tutto…

Dopo la cancellazione del decollo dello scorso 15 febbraio, decisa per via di un’anomalia nel sistema del primo stadio e del mancato invio dei segnali d’accensione per gli SRB-3, JAXA intende effettuare un nuovo lancio entro la fine di marzo. H3 è un progetto cruciale per l’industria giapponese, si tratta del primo missile nipponico progettato in 20 anni e rappresenta un progetto radicalmente nuovo rispetto al suo predecessore di base….

Leggi tutto…