Leavine Family Racing chooses MarketBot 3D printer

One of the NASCAR Cup Series Team, Leavine Family Racing, has chosen the MakerBot METHOD X ™ 3D Printer for its broad portfolio of advanced materials and thermoplastics available for both rapid prototyping and final parts.

The racing team completed the 2020 NASCAR Cup Series season with a top 20 finish and has raced the No. 95 Toyota Camry from 2011 to 2020.

Michael Leavine, vice president of Leavine Family Racing said that “Advancing additive manufacturing is something I’ve been a proponent of for the past few years. I believe it will change how we fundamentally manufacture in our sport”. 

Why the choice of METHOD

Leavine needed high strength and high heat resistant materials for the racing parts. METHOD has been selected because it presented an answer and obvious advantage for Leavine’s need: METHOD is in fact able to pint at extremely high temperatures.

Leavine decided to adopt 3 MakerBot METHOD X 3D printers:

  • 2 for the garage
  • 1 that could be placed in the Leavine office or carried on the road and used during the races
Looking at Leavine’s past

InitiallyLeavine had entered the world of 3D printing with a preference for an extremely economical approach. Instead of working with a supplier, Leavine decided to buy a low-end 3D printer online and to produce the necessary parts in-house.

An example of this approach is the production of pucks, a sensitive aerodynamic component present on cars for better performance. The inch-wide pucks are used to fill the holes in the splitters on cars. The cost of an injection-molded disc was $ 5 just for one-time use, Leavine managed in this way to save $ 20,000- $ 25,000 per year.

New applications in races with 3D printing

Subsequently, Leavine welcomed and explored other applications with 3D printing. This is the case of assembly prototyping and equipment manufacturing. As reported above the vice president of Leavine Family Racing is adamant that additive manufacturing could change their manufacturing processes. 

Technicians can have direct and quick access to 3D printers and they are now able to independently produce prototypes and end-use parts. This will save time and money and gives more space to the team’s creativity.

The team used METHOD for different aims:

  1. To print dummy camera pods mounted on the tail of the car. They printed these elements on-site and they didn’t have to remove the race-ready parts from the car during the body manufacturing process…a clear time saver!
  2. To print the air intake duct inside the car. Temperatures around it can get very high, so it requires a part very robust and able to maintain its integrity even in extreme temperatures
Here comes carbon fiber

For this second application, it was used a material with great strength and thermal performanceMakerBot Nylon Carbon Fiber. In fact, it produces strong and accurate parts and it could be applied to print metal replacement parts in some applications

The heated chamber of the METHOD X 3D printer reaches up to 110 degrees Celsius, allowing parts to cool gradually to prevent warping and wrinkling.

 

Subscribe now
to our quarterly Newsletter

to stay updated on news,
technologies and activities 

 

Source: 3D Printing Media


Leggi anche

Quali sono i test che consentono di determinare le migliori performance di un materiale composito progettato e realizzato ad hoc per una specifica applicazione? Quali sono ad oggi, le tecnologie di produzione che danno vita a componenti sempre più performanti? …

Leggi tutto…

The PAL-V Liberty is officially the world’s first flying car to be street legal! The flying car recently passed the European road admission tests. The PAL-V’s hybrid composite chassis is made of carbon fiber body composites….

Leggi tutto…

Lancaster University researchers have discovered how to create a composite material capable of capturing thermal energy from the sun and storing it for long periods. Implementation of these materials could allow researchers to find other smart and innovative solutions….

Leggi tutto…

Sicomin’s GreenPoxy® 33 bio-based epoxy resin, a clear system formulated especially for compression molding techniques, was used to make carbon fiber windsurf fins. The collaboration with Sonnatg Fins made it possible to create a customized product that combines speed, fatigue performance and sustainability….

Leggi tutto…

The CarE-Service project is aimed to face current and future challenges towards the transformation from traditional fuel cars to Electric (EV) and Hybrid (HEV) vehicles. The project proposal aims at demonstrating innovative business models entailing the re-use, remanufacturing and recycling of some key components of E&HEVs. The topic will be deepened in a dedicated webinar on December 9th….

Leggi tutto…