NASA per lo sviluppo di componenti di nuova generazione


NASA’s Glenn Research Center in Cleveland recently signed a commercial nonexclusive license agreement with Imitec Inc. of Schenectady, New York. The agreement includes development, manufacturing and distribution of NASA’s resin transfer moldable RTM370 imide resin to make the next generation of high-performance aerospace polyimides. RTM370 high-temperature material has a variety of potential applications ranging from aerospace applications – such as aircraft engines, space propulsion systems and missiles — to bushings and bearings for non-aerospace applications — such as oil drilling and rolling mills. “We are very happy to announce this partnership,” said Kim Dalgleish-Miller, chief of the Technology Transfer Office at Glenn. “The collaboration between NASA and Imitec opens excellent opportunities for creating impact in the marketplace and benefits to the economy.”
NASA and the aerospace industry need lightweight polymer composites to replace metal components, which would result in fuel efficiency and bigger payloads in aircraft and space transportation vehicles.
Dr. Chun-Hua “Kathy” Chuang, inventor of RTM370, is a chemical engineer in the Materials Chemistry and Physics Branch at Glenn.
Produced by a solvent-free melt process, these resins exhibit high glass transition temperatures (Tg = 370 to 400°C), low-melt viscosities (10 to 30 poise), long pot-life (1 to 2 hr), and can be easily processed by low-cost RTM and vacuum-assisted resin transfer molding (VARTM). These RTM resins melt at 260 to 280°C and can be cured at 340 to 370°C in 2 hr, without releasing any harmful volatile compounds.
This technology was developed to make polyimide resins from novel asymmetric dianhydrides (a-dianhydrides) and kinked diamines to achieve low-melt viscosities that are amenable to low-cost RTM and VARTM, while retaining high-temperature finished product performance above 300°C. These a-dianhydride-based RTM imide resins display low-melt viscosities (10 to 30 poise), which cannot be achieved using normal symmetric dianhydrides. RTM imide resins can be melted at 260 to 280°C, and injected into fiber preforms under pressure (200 psi) or vacuum (VARTM). The resins also can be made into powder prepregs with lengthy out-time by melting the resin powders so that they fuse onto fibers. RTM imide resins display high softening temperatures (370 to 400°C) and excellent toughness, as evidenced by the RTM370 resins open-hole compression strength. The resins also possess significant thermo-oxidative stability by long-term isothermal aging at 288°C (550°F) for 1000 hr. The unique melt process without a solvent provides a manufacturing advantage over the expensive high boiling solvents previously needed to produce oligomers. This process also eliminates the need for tedious and high-cost solvent removal.

Caption: Dr. Chun-Hua “Kathy” Chuang.
Credits: NASA


Leggi anche

Archer and Fiat Chrysler announced the agreement for the production of electric aircraft. This partnership will probably allow the start-up to low purchasing costs and to accelerate the launch of an electric flying car….

Leggi tutto…

Concordia Centre for Composites (CONCOM) is one of the participants in the Academic Partner Program (APP) launched by AnalySwift. Its research concerns the development of thermoplastic composites landing gear for helicopters using two AnalySwift products: the VABS and SwiftComp simulation software.

Leggi tutto…

Alpha rocket, produced by the house Firefly Aerospace, will be upgraded using the automatic carbon fiber spreading process. The new automated rocket manufacturing sites will create several advantages, such as reduced composite material waste, manpower, construction time, structure weight, and overall costs….

Leggi tutto…

La Scuola estiva materiali compositi prenderà il via dal 15 al 17 settembre in 3 sessioni pomeridiane online attraverso la piattaforma “Compositi Live Webinar”.
La Scuola è rivolta a tecnici e progettisti, ricercatori, studenti che desiderano approfondire le proprie competenze su proprietà, tecnologie di processo, progettazione e nuove applicazioni. Qui di seguito l’abstract dell’intervento dal titolo “Thermoplastic Composites: current production and new developments in Aerospace” che terrà Arnt Offringa, GNK Fokker….

Leggi tutto…

University of Illinois composite manufacturing methods

Le ali degli aeroplani, le pale delle turbine eoliche e altre parti di grandi dimensioni vengono in genere create utilizzando la polimerizzazione in massa (bulk polymerization), che richiede l’impiego di enormi autoclavi. La frontal polymerization è un nuovo metodo per la produzione dei compositi che al contrario non necessita di un investimento in grandi strutture. I ricercatori dell’Università dell’Illinois a Urbana-Champaign hanno condotto uno studio, mettendo i due processi a confronto per valutare i rispettivi pro e contro…

Leggi tutto…