The NEMMO project: tests on composites blade panels to determine biofouling effects

The NEMMO project has installed a set of tidal turbine blade panels made from fibreglass and a gel-coat coating for testing at the HarshLab facility, an advanced floating platform-laboratory for the evaluation of materials and components in real offshore environment. These samples, taken from the current Magallanes’ turbine blade, will be submerged for six months to determine the level of biofouling on the surface. These results will then be used as a reference for the development of new blade materials and coatings.

 

The NEMMO project

The Next Evolution in Materials and Models for Ocean Energy (NEMMO) project will boost the competitiveness of tidal energy by optimising tidal turbine blade design and performance. This project aims to create a larger, lighter and more durable composite blade for floating tidal turbines, enabling devices to reach capacities of over 2 MW.

In this context, the creation of novel coatings and materials is a core part of the NEMMO project. After extensive modelling and testing, the team will define the optimal material composition, textures and surfaces to reduce wear on the blade. The wider objective is to lower maintenance costs and increase the yield of tidal turbines, and to improve the cost-effectiveness of tidal energy overall.

Protecting blades against biofouling

First of all, what is biofouling? This is the process by which microorganisms, plants, algae, or small animals accumulate on a blade’s surface, which reduces the performance of the blade and the power output of the turbine as a whole.

Actually, the project’s work on blade materials comes under Work Package 3: Nano-reinforced composites, antifouling coatings and antifouling bio-mimetic surfaces. More in details, WP3 deals with the integration of new materials for the blades. These materials could be at nanometric scale inside the blade to increase the mechanical properties or enhanced coatings with increased barrier wear, impact and anti-fouling properties and bio-mimetic surfaces to protect blades against ageing, wear and biological growth effects.

For more details: www.nemmo.eu

Images Credit: NEMMO project


Leggi anche

Uno studio dell’Istituto di tecnologia chimica Fraunhofer prevede che soltanto in Germania entro il 2024 dovranno essere sostituite 15.000 pale di generatori eolici, alle quali se ne aggiungeranno altre 72.000 nei tre anni successivi. Esistono già metodi ecologici per lo smaltimento dell’acciaio e del calcestruzzo nei generatori eolici, ma il riciclaggio delle pale del rotore rimane problematico. Per questo i ricercatori del Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institut, WKI hanno sviluppato una soluzione: hanno usato una nuova tecnica di riciclaggio per recuperare il legno di balsa contenuto nelle pale del rotore, reimpiegandolo per esempio in tappetini isolanti per edifici…

Leggi tutto…

The Composites Institute e UK Research and Innovation’s (UKRI) Innovate UK hanno annunciato sette nuovi progetti di ricerca e innovazione che serviranno a sviluppare nuovi materiali compositi in grado di far avanzare la produzione di componenti in una serie di diversi settori industriali, come la produzione aerospaziale, automobilistica e di energia rinnovabile…

Leggi tutto…

Centri di lavoro best-in-class a 5 assi ed alta velocità per la lavorazione di materiali comositi, alluminio e metallo

CMS SpA produce centri di lavoro multiassi a controllo numerico, termoformatrici e sistemi di taglio a getto d’acqua che permettono all’azienda di servire molti settori industriali: aerospaziale, automotive, nautica, ferroviario e molto altro. CMS offre, insieme a qualità e precisioni, soluzioni innovative, capaci di coprire le diverse fasi del processo produttivo o le specifiche esigenze. …

Leggi tutto…

È difficile prevedere le proprietà di un materiale come il vetro partendo dalla sua composizione perché tutti i tipi di vetro sono strutture disordinate. Un nuovo modello matematico sviluppato da un gruppo di ricercatori dell’Università del Michigan permette di prevedere la densità e la rigidità del vetro. Queste informazioni possono essere utilizzate per migliorare la progettazione di fibre di rinforzo da impiegare per materiali compositi resistenti e leggeri destinati ad automobili e turbine eoliche…

Leggi tutto…

I moduli fotovoltaici sono posizionati in genere sui tetti, in quanto sono le zone degli edifici che ricevono maggiore irradiazione solare. Tuttavia, un gruppo di ricercatori del Fraunhofer Center for Silicon Photovoltaics CSP ha analizzato la possibilità di inserire moduli fotovoltaici anche nelle facciate per integrare l’alimentazione. Se progettati in modo adeguato, possono fornire oltre il 50% in più di energia rispetto ai tipi di moduli esistenti. Anche i muri di cemento sono adatti…

Leggi tutto…