The NEMMO project: tests on composites blade panels to determine biofouling effects

The NEMMO project has installed a set of tidal turbine blade panels made from fibreglass and a gel-coat coating for testing at the HarshLab facility, an advanced floating platform-laboratory for the evaluation of materials and components in real offshore environment. These samples, taken from the current Magallanes’ turbine blade, will be submerged for six months to determine the level of biofouling on the surface. These results will then be used as a reference for the development of new blade materials and coatings.

 

The NEMMO project

The Next Evolution in Materials and Models for Ocean Energy (NEMMO) project will boost the competitiveness of tidal energy by optimising tidal turbine blade design and performance. This project aims to create a larger, lighter and more durable composite blade for floating tidal turbines, enabling devices to reach capacities of over 2 MW.

In this context, the creation of novel coatings and materials is a core part of the NEMMO project. After extensive modelling and testing, the team will define the optimal material composition, textures and surfaces to reduce wear on the blade. The wider objective is to lower maintenance costs and increase the yield of tidal turbines, and to improve the cost-effectiveness of tidal energy overall.

Protecting blades against biofouling

First of all, what is biofouling? This is the process by which microorganisms, plants, algae, or small animals accumulate on a blade’s surface, which reduces the performance of the blade and the power output of the turbine as a whole.

Actually, the project’s work on blade materials comes under Work Package 3: Nano-reinforced composites, antifouling coatings and antifouling bio-mimetic surfaces. More in details, WP3 deals with the integration of new materials for the blades. These materials could be at nanometric scale inside the blade to increase the mechanical properties or enhanced coatings with increased barrier wear, impact and anti-fouling properties and bio-mimetic surfaces to protect blades against ageing, wear and biological growth effects.

For more details: www.nemmo.eu

Images Credit: NEMMO project


Leggi anche

BRYSON project

Il Progetto BRYSON che vede coinvolto un consorzio di aziende e istituti di ricerca tedesche, tra cui l’Università tecnica di Dresda, risponde alla sfida della transizione verso l’idrogeno. Si pone infatti l’obiettivo di sviluppare innovativi sistemi di stoccaggio dell’idrogeno per una integrazione ottimizzata nella struttura dei vari tipi di veicoli…

Leggi tutto…

Volt

I ricercatori del KTH Royal Institute of Technology in Svezia hanno dimostrato in uno studio pubblicato di recente la possibilità per un nuovo materiale composito in fibra di carbonio di cambiare forma con l’aiuto di impulsi elettronici. Il materiale potrebbe trovare applicazione per esempio nella produzione di aeroplani e pale eoliche…

Leggi tutto…

researchers

L’etanolo ha una densità di energia volumetrica cinque volte superiore (6,7 kWh/L) rispetto all’idrogeno (1,3 kWh/L) e può essere utilizzato in sicurezza nelle celle a combustibile per la generazione di energia. In teoria, l’efficienza di una cella a combustibile a etanolo è del 96%, ma in pratica alla massima densità di potenza è solo del 30%. Per raggiungere una maggiore efficienza un gruppo di ricercatori dell’IPEN (Brasile) sta studiando nuove membrane in materiale composito per celle a combustibile a etanolo diretto…

Leggi tutto…

Una nuova tecnologia rivoluzionaria sviluppata dal National Composites Center (NCC) e dalla Oxford Brookes University consente ora di separare (o smantellare) le strutture in materiale composito in modo rapido ed economico utilizzando una semplice fonte di calore. Questa ricerca potrebbe trasformare la progettazione, l’uso e il riciclaggio a fine vita di un’ampia gamma di prodotti, tra cui automobili, aeromobili e turbine eoliche…

Leggi tutto…

Uno studio dell’Istituto di tecnologia chimica Fraunhofer prevede che soltanto in Germania entro il 2024 dovranno essere sostituite 15.000 pale di generatori eolici, alle quali se ne aggiungeranno altre 72.000 nei tre anni successivi. Esistono già metodi ecologici per lo smaltimento dell’acciaio e del calcestruzzo nei generatori eolici, ma il riciclaggio delle pale del rotore rimane problematico. Per questo i ricercatori del Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institut, WKI hanno sviluppato una soluzione: hanno usato una nuova tecnica di riciclaggio per recuperare il legno di balsa contenuto nelle pale del rotore, reimpiegandolo per esempio in tappetini isolanti per edifici…

Leggi tutto…