New challenges for spacesuit technology

After more than 50 years of the first moon landing, there is a new challenge for space missions. In fact, with the world increasingly focusing its attention on reaching new space milestones and overcoming technical boundaries, the space industry is rapidly looking to upgrade its spacesuit technology.

Specifically, spacesuits need better protection from the holes and scratches that are often caused by debris in space. With the collaboration of several partners, the International Lunar Exploration Working Group (ILEWG) is taking on this challenge. It aims to develop a spacesuit layer with a damage-detection system. And Teijin Aramid’s Twaron is proving an effective material for this prototype, thanks to its ballistic properties and conductivity.

 

Protecting from debris, detecting damage

In space, any impact from debris can be life-threatening to astronauts. Did you know that micrometeorites, in particular, travel 17 kilometers per second on average – faster than a typical bullet shot? Traditional spacesuits have not provided enough protection from this debris – and if it punctures a spacesuit, it can release air or cut the skin, making the wearer even more vulnerable. For astronauts’ safety, it is requested not only a protection from this debris, but also an alert system that can inform them of any damage that does occur to their spacesuits. What’s more, spacesuits also need to be lighter and more comfortable.

To address these challenges, the ILEWG – a public forum to support the collaboration between several space agencies worldwide, including ESA, NASA, and CNES – is pioneering an impact-resistant extra-vehicular spacesuit layer with a damage-detection system.

Jamal Ageli, spacesuit design coordinator ILEWG, explains: “This project is a joint effort with several partners, including Royal Academy of Art The Hague, EuroMoonMars, ArtMoonMars, and institutions in France, Austria, and Switzerland.”

Remko Pol, Global Market Manager Aerospace, adds: “This collaborative, innovative project aligns perfectly with Teijin Aramid’s values. So, when the ILEWG contacted us in February 2020 to see whether Twaron’s ballistic and conductive properties could help them in their mission, we were on board straight away! With the spacesuit we are still in the earliest stages of this development, but we’re reaching for the moon.”

 

The material for the future spacesuit

Indeed, these properties are both proving very useful. Remko explains: “Around 150 hexagonal patches of the Twaron fabric we supply will be used in the suit layer.”

As well as forming an impact protection layer, each patch will also act as a damage-detection sensor to alert astronauts to stretches, holes, and scratches. The conductive yarn will send electrical signals to an in-built computing unit that measures any changes to the current. For example, if there is a puncture, the loss of conductivity will alert the wearer to the affected area. Combined with its low weight, these advantages make Twaron an ideal material for this project.

Maria Persson, Senior R&D Textile Expert, explains: “We supplied fabric solutions made from our finest filament yarn, Twaron Ultra Micro, for this prototype because they enable a high protection-to-comfort ratio. What’s more, by leveraging Twaron’s high-performance properties alongside conductive yarn to create a smart textile solution, the ILEWG may be able to reduce the number of protective layers required, for even greater comfort and mobility. To test the suit, astronauts will simulate space living for two weeks, assessing the suit’s comfort, performance, and power supply”.

 

Reaching for the moon

Now, the suit layer prototype is almost ready for testing. Jamal explains: “To test the suit, astronauts will simulate space living for two weeks, assessing the suit’s comfort, performance, and power supply. We’re focusing initially on the electronics and basic performance, so we can demonstrate that the concept works.”

The first round of tests will take place in the Alps in Switzerland, with future rounds planned in Hawaii, Iceland, and Poland.


Leggi anche

Un consorzio composto dalle PMI ÉireComposites e Plasma Bound e dall’Università tecnologica di Dublino ha ottenuto un finanziamento governativo di 2,5 milioni di euro per il progetto Ad Astra, che ha l’obiettivo di promuovere l’adozione di materiali compositi leggeri in diverse fasi del processo produttivo dell’industria aerospaziale. Il lavoro sarà sostenuto nell’ambito del DTIF (DISRUPTIVE TECHNOLOGIES INNOVATION FUND) Call 5, guidato dal governo irlandese e da Enterprise Ireland….

Leggi tutto…

AIMPLAS e TNO hanno concluso il progetto ELIOT, che prevede una revisione completa delle tecnologie di riciclaggio per compositi e biocompositi. Durante i test sono stati valutati dodici metodi applicati a sei diversi materiali. La solvolisi e la pirolisi sono risultate le alternative più promettenti per la produzione su larga scala. La pirolisi, tuttavia, ha dimostrato di avere costi economici ed ambientali maggiori rispetto alla solvolisi, dal momento che genera il 17% in più di anidride carbonica e sviluppa il doppio del calore….

Leggi tutto…

In occasione dell’evento JEC Forum ITALY – organizzato da JEC Group in collaborazione con Assocompositi – del prossimo 6-7 giugno 2023 a Bologna, Leonardo Spa terrà un intervento all’interno della sessione “Nuovi modelli per l’innovazione e nuove tecnologie”. Disponibile ora l’abstract dello speech!…

Leggi tutto…

Nell’ottica di rendere più sostenibile l’industria aerospaziale, i compositi a sandwich possono sostituire i termoindurenti tradizionali nella creazione di parti strutturali degli aerei, senza rinunciare alla resistenza in ambienti estremi o in situazioni di carico imprevisto. EconCore sta lavorando con Airbus, Fraunhofer e il Politecnico della Danimarca (DTU) alla realizzazione di un timone sostenibile per un aeromobile in compositi a nido d’ape….

Leggi tutto…

Oggi parlare di aviazione sostenibile, vuol dire porsi l’obiettivo di ridurre il peso strutturale dei velivoli, limitando al contempo anche i consumi e le emissioni. Per raggiungere tale scopo è opportuno sostituire le parti metalliche con equivalenti in compositi, che possiedono elevati rapporti di resistenza e rigidità rispetto al peso. NLR (Netherlands Aerospace Centre) sta esplorando le potenzialità della produzione additiva su larga scala di materiali termoplastici rinforzati con fibre….

Leggi tutto…