BRYSON project

New hydrogen pressure storage systems manufactured with composites

At the beginning of 2020 Hydrogen Council (Oslo, Norway) proclaimed the start of the “Decade of Hydrogen”. Through its participation in the BRYSON project, the Institute of Lightweight Engineering and Polymer Technology (ILK) at the TU Dresden is making significant progress towards emission-free road traffic.

The BRYSON project (BauRaumeffiziente HYdrogenSpeicher Optimierter Nutzbarkeit, “space-efficient hydrogen storage with optimized usability”) is funded by the German Federal Ministry of Economics and Energy. This project involves a consortium of German Research institutes and companies, included BMW AG (Munich), ILK, composite engineering and development firm Leichtbauzentrum Sachsen (LZS, Dresden), composites distributor WELA Handelsgesellschaft (Geesthacht) and Munich University of Applied Sciences.

The project aims to develop new types of hydrogen pressure storage systems. These should be designed in such a way that they can be easily integrated into universal vehicle architectures. The project therefore focuses on the development of tank container systems in flat design.

BRYSON project
Integration concept to accommodate the pressurized hydrogen storage tanks in the floor of the InEco which was developed at ILK. Source | © TU Dresden, ILK

For this purpose, the ILK is developing chained tubular storage tanks in close cooperation with Leichtbauzentrum Sachsen GmbH and herone GmbH, which are manufactured from semi-finished thermoplastic fibre composite products using braiding processes. The use of highly productive braiding technology offers the possibility of reducing the manufacturing costs of hydrogen tanks for fuel cell vehicles and improving competitiveness compared to battery electric vehicles.

The use of semi-finished thermoplastics also allows easy recycling of the tank structures after their use, further improving the overall ecological balance of the Dresden approach.

 

Featured image: The multi-cell storage system enables efficient use of the limited space in modern vehicle designs.© TUD/ILK


Leggi anche

The use of CFRP can significantly reduce CO2 emissions in transportation, including airplanes and automobiles. However, a lot of CO2s is released during the production of CFRP, and most used and waste materials end up in landfills. With the growing market of CFRP, there is a strong demand for the development of recycling technologies. Toyota Industries have developed technology that aligns recycled carbon fibers from used CFRP into a uniform, consistent yarn, adapting its well-established cotton spinning methods to carbon fiber….

Leggi tutto…

Spherecube, una startup e spinoff dell’Università Politecnica delle Marche, propone di risolvere i problemi legati alla produzione tradizionale dei materiali compositi alto performanti, grazie ad un sistema brevettato di stampa 3D per compositi a base termoindurente e rinforzo continuo, che permette di ridurre gli scarti di produzione, di eliminare i materiali consumabili, di accorciare il tempo di curing e di azzerare gli sfridi di materiale….

Leggi tutto…

BASF, Flex-N-Gate, Toyota and L&L Products were named finalists for the 2023 JEC Innovation Award in the Automobile and Road Transportation – Design Part category with the composite seatback design of the 2022 Toyota Tundra. The goal was to make the vehicle as light and efficient as possible, but also cost-effective, with flexible design and more storage space for the end user….

Leggi tutto…

La perdita di performance della Front Wing dal punto di vista strutturale, nel prototipo della stagione 2022, ha spinto il Team Dynamis PRC a realizzare analisi esplicite ad impatto con i coni delimitanti il tracciato. In questo modo, è possibile valutare come implementare sequenze di laminazione e la geometria di alcuni componenti dell’assieme dell’ala frontale….

Leggi tutto…

The AIMPLAS’s FOREST (advanced lightweight materials for energy-efficient structures) project aims to provide new innovative eco-composites for safe and sustainable transport applications, by combining the development of bio-based polymers and additives, recycled fibers with greater resource efficiency and particles to avoid electromagnetic interference in full alignment with the EU 2030 Climate and Energy Framework….

Leggi tutto…