New MOF-Based material stores energy for a long time

Storing solar energy for long periods is not an easy task. Through photovoltaics, it is possible to transform it into electricity that could be stored for days in the batteries. But what if we wanted to store heat? Well, this issue could become complicated.

Fortunately, nowadays chemistry represents and proposes solutions. Research dedicated to solar gain allows studying materials that may act as a sort of battery thanks to their chemical bonds. 

Lancaster University research

Researchers from Lancaster University analyzed a particular metal-organic structure or MOF which forms the basis of crystalline material. They found out that this structure is able to store energy at room temperature for months and release it on demand as heat.

Implementation of these materials could allow researchers to find another smart and innovative solution: harness solar energy during summer months and store it for winter use when there is less solar energy. This system could be exploited for different applications:

  • heating in remote places
  • as an ecological alternative to traditional heating in offices and homes.
  • as a thin coating attached to the surface of buildings
  • on the windscreens of cars where the stored heat could be useful for de-icing of the glass in freezing winter mornings
New MOF-Based Material

MOFs are made up of a network of metal ions connected by carbon-based molecules to create 3D structures. A key property of this class of compounds is porosity. This means that they can form composite materials by adding other small molecules inside their structures.

The research focused specifically on a metal-organic structure previously synthesized by a separate research team at the Kyoto University in Japan and known as “DMOF1“. Starting from this element, the scientists charged the pores of the MOF with azobenzene molecules. This compound absorbs light and acts as a molecular photo-switch. In other words, it can change its shape (isomerism) and its physical and chemical characteristics in response to an external stimulus, such as heat or light. This means that it can move from a “more energetic” to a “less energetic” form.

During the experiments, the researchers exposed the material to UV light. The rays led the azobenzene molecules to change shape to a strained configuration within the MOF pores. This process stores the sun’s energy in a manner similar to the potential energy of a bent spring. In order to release it, it is necessary to apply just a little external heat. This works as a trigger for a quick change of state and in turn, it provides more heat.

What said Dr John Griffin, Senior Lecturer in Materials Chemistry, Lancaster University

“The material functions a bit like phase change materials, which are used to supply heat in hand warmers. However, while hand warmers need to be heated in order to recharge them, the nice thing about this material is that it captures ‘free’ energy directly from the sun. It also has no moving or electronic parts and so there are no losses involved in the storage and release of the solar energy. We hope that with further development we will be able to make other materials which store even more energy”

Additional tests revealed the material could store the energy for a minimum of four months. The longer duration of the stored energy will make it potential cross-seasonal storage.

 

If you want to stay updated on news, technologies and activities, subscribe to Compositi Newsletter

Source: Lancaster University


Leggi anche

University of Illinois composite manufacturing methods

Le ali degli aeroplani, le pale delle turbine eoliche e altre parti di grandi dimensioni vengono in genere create utilizzando la polimerizzazione in massa (bulk polymerization), che richiede l’impiego di enormi autoclavi. La frontal polymerization è un nuovo metodo per la produzione dei compositi che al contrario non necessita di un investimento in grandi strutture. I ricercatori dell’Università dell’Illinois a Urbana-Champaign hanno condotto uno studio, mettendo i due processi a confronto per valutare i rispettivi pro e contro…

Leggi tutto…

Aperte le iscrizioni per la Scuola Estiva Materiali Compositi 2020

Quest’anno la Scuola Estiva Materiali Compositi si svolgerà online e in collaborazione con Compositi Magazine e la piattaforma Compositi Live Webinar. L’evento si svolgerà in tre sessioni pomeridiane nelle giornate del 15, 16 e 17 settembre. È possibile iscriversi sia a una sola sessione, che a due o a tutte e tre. Iscriviti ad ogni sessione a cui vuoi partecipare, effettuando una singola registrazione per ciascuna. L’iscrizione verrà ritenuta valida una volta ricevuta la contabile del bonifico….

Leggi tutto…

Un nuovo metodo di produzione roll-to-roll sviluppato presso il MIT potrebbe consentire di produrre celle solari ultraleggere e flessibili e una nuova generazione di schermi e altri componenti elettronici a film sottile…

Leggi tutto…

Structural supercapacitor electrode for Mobile electronic devices

L’esplosione di dispositivi mobili, veicoli elettrici, droni e altre tecnologie ha causato la crescita della domanda di nuovi materiali leggeri adatti alla loro fabbricazione. I ricercatori della University of Houston e della Texas A&M University hanno sviluppato un nuovo tipo di elettrodo per supercondensatori strutturali costituito da ossido di grafene ridotto e nanofibra di aramide, più forte e più versatile dei tradizionali elettrodi a base di carbonio…

Leggi tutto…

BRYSON project

Il Progetto BRYSON che vede coinvolto un consorzio di aziende e istituti di ricerca tedesche, tra cui l’Università tecnica di Dresda, risponde alla sfida della transizione verso l’idrogeno. Si pone infatti l’obiettivo di sviluppare innovativi sistemi di stoccaggio dell’idrogeno per una integrazione ottimizzata nella struttura dei vari tipi di veicoli…

Leggi tutto…