Structural supercapacitor electrode for Mobile electronic devices

Promising Lightweight Material and Modeling Methods for Energy Storage

The explosion of mobile electronic devices, electric vehicles, drones and other technologies have driven demand for new lightweight materials that can provide the power to operate them. Researchers from the University of Houston and Texas A&M University have reported a structural supercapacitor electrode made from reduced graphene oxide and aramid nanofiber that is stronger and more versatile than conventional carbon-based electrodes.

Then, the UH research team also demonstrated that modeling based on the material nanoarchitecture can provide a more accurate understanding of ion diffusion and related properties in the composite electrodes than the traditional modeling method, which is known as the porous media model.

University of Houston composite electrodes for energy storage made from reduced graphene oxide and aramid fiber
Haleh Ardebili, Bill D. Cook Associate Professor of Mechanical Engineering at UH, led work demonstrated that modeling based on the material nanoarchitecture can provide a more accurate understanding of ion diffusion and other properties in composite electrodes. Credit: University of Houston

We are proposing that these models based on the nanoarchitecture of the material are more comprehensive, detailed, informative and accurate compared to the porous media model,” said Haleh Ardebili, Bill D. Cook Associate Professor of Mechanical Engineering at UH and corresponding author for a paper describing the work, published in ACS Nano.

More accurate modeling methods will help researchers find new and more effective nanoarchitectured materials for energy storage, that can provide longer battery life and higher energy at a lighter weight, she said. The researchers knew the material tested – reduced graphene oxide and aramid nanofiber, or rGO/ANF – was a good candidate because of its strong electrochemical and mechanical properties. Nowadays supercapacitor electrodes are usually made of porous carbon-based materials, which provide efficient electrode performance, Ardebili said.

While the reduced graphene oxide is primarily made of carbon, the aramid nanofiber offers a mechanical strength that increases the electrode’s versatility for a variety of applications, including for the military. The work was funded by the U.S. Air Force Office of Scientific Research

In addition to Ardebili, co-authors include first author Sarah Aderyani and Ali Masoudi, both of UH; and Smit A. Shah, Micah J. Green and Jodie L. Lutkenhaus, all from A&M. The current paper reflects the researchers’ interest in improving modeling for new energy materials. “We wanted to convey that the conventional models out there, which are porous media-based models, may not be accurate enough for designing these new nanoarchitectured materials and investigating these materials for electrodes or other energy storage devices,” Ardebili said.

That’s because the porous media model generally assumes uniform pore sizes within the material, rather than measuring the varying dimensions and geometric properties of the material. “What we propose is that yes, the porous media model may be convenient, but it is not necessarily accurate,” Ardebili said. “For state-of-the-art devices, we need more accurate models to better understand and design new electrode materials.”

 

Featured image Credit: StartupStockPhotos from Pixabay

Source: University of Houston


Leggi anche

Un nuovo metodo di produzione roll-to-roll sviluppato presso il MIT potrebbe consentire di produrre celle solari ultraleggere e flessibili e una nuova generazione di schermi e altri componenti elettronici a film sottile…

Leggi tutto…

BRYSON project

Il Progetto BRYSON che vede coinvolto un consorzio di aziende e istituti di ricerca tedesche, tra cui l’Università tecnica di Dresda, risponde alla sfida della transizione verso l’idrogeno. Si pone infatti l’obiettivo di sviluppare innovativi sistemi di stoccaggio dell’idrogeno per una integrazione ottimizzata nella struttura dei vari tipi di veicoli…

Leggi tutto…

Volt

I ricercatori del KTH Royal Institute of Technology in Svezia hanno dimostrato in uno studio pubblicato di recente la possibilità per un nuovo materiale composito in fibra di carbonio di cambiare forma con l’aiuto di impulsi elettronici. Il materiale potrebbe trovare applicazione per esempio nella produzione di aeroplani e pale eoliche…

Leggi tutto…

researchers

L’etanolo ha una densità di energia volumetrica cinque volte superiore (6,7 kWh/L) rispetto all’idrogeno (1,3 kWh/L) e può essere utilizzato in sicurezza nelle celle a combustibile per la generazione di energia. In teoria, l’efficienza di una cella a combustibile a etanolo è del 96%, ma in pratica alla massima densità di potenza è solo del 30%. Per raggiungere una maggiore efficienza un gruppo di ricercatori dell’IPEN (Brasile) sta studiando nuove membrane in materiale composito per celle a combustibile a etanolo diretto…

Leggi tutto…

Una nuova tecnologia rivoluzionaria sviluppata dal National Composites Center (NCC) e dalla Oxford Brookes University consente ora di separare (o smantellare) le strutture in materiale composito in modo rapido ed economico utilizzando una semplice fonte di calore. Questa ricerca potrebbe trasformare la progettazione, l’uso e il riciclaggio a fine vita di un’ampia gamma di prodotti, tra cui automobili, aeromobili e turbine eoliche…

Leggi tutto…