Scienziati sviluppano laboratorio virtuale per progettare materiali compositi

Laboratorio virtuale per progettare materiali compositi

UCL scientists have shown how advanced computer simulations can be used to design new composite materials. Nanocomposites, which are widely used in industry, are revolutionary materials in which microscopic particles are dispersed through plastics. But their development until now has been largely by trial and error.
The ‘virtual lab’, developed using supercomputer simulations by UCL’s James Suter, Deren Groen and Peter Coveney greatly improves our understanding of how composite materials are built on a molecular level. They allow the properties of a new material to be predicted based simply on its structure and the way it is manufactured – a holy grail of materials science.
“Developing composite materials has been a bit of a trial-and-error process until now,” says James Suter (UCL Chemistry), the first author of the study. “It typically involves grinding and mixing the ingredients and hoping for the best. Of course we test the properties of the resulting materials, but our understanding of how they are structured and why they have the properties they have, is quite limited. Our work means we can now predict how a new nanocomposite will perform, based only on their chemical composition and processing conditions.”
The team, based in UCL’s Centre for Computational Science, looked at a specific type of composite material, where particles of the clay called montmorillonite are mixed with a synthetic polymer. It is impossible to study these with microscopes – the processes are smaller than the wavelength of light, and therefore impossible to observe directly. Moreover, the structure of the clay particles does not lend itself to observation, even through less direct methods. The clay particles resemble stacked packs of playing cards, made up of tightly packed sheets (the cards) that may separate out and sometimes cleave off entirely as the long chain-like polymer molecules slide between them. This means much of the interaction between the polymer and the clay is hidden from view.
“Our study developed computer simulations that describe precisely how the layered particles and the polymer chains interact,” says co-author Dr Derek Groen (UCL Chemistry). “The challenge is getting enough precision without the computer simulation being unmanageable. Certain processes need a highly detailed simulation which describes everything on a quantum level – but if we simulated the entire sample at that level, we’d literally need several decades of supercomputer time.”
The team showed that certain interactions, such as when the edge of a sheet of clay comes into contact with a polymer chain, require a quantum simulation; some require only an atomic-level simulation (where each atom in a molecule is represented as a ball on a spring); while others can have an even lower level of fidelity, bundling atoms together to give the approximate shape and properties of a molecule. These multiple ways of representing the same system constitute a multiscale approach to modelling materials, where the most appropriate level of detail can be adopted for different parts of the simulation.
“When you make approximations like this, it’s important to test that they are accurate,” says Suter. “A lot of our work involved comparing the different types of simulation and ensuring that they gave results that were consistent with each other. The quantum mechanical model starts from first principles and is derived from the most basic laws of physics, so we know it’s right. But there are quite a few assumptions involved in a molecular model, and we had to ensure those assumptions were correct.”
The resulting simulations show for the first time exactly how the polymers and clay particles interact. The long, chain-like polymer molecules (which typically come in a tangled bundle) unwind themselves, slip between the sheets of the clay particles, and with certain types of polymer, gently coax them apart. On longer length and timescales, which the multiscale simulations permitted the team to study, they were able to see the aggregation of the polymer-entangled clay sheets into organised arrays of stacks, with very different properties. These predictions are already being used to see how to improve construction of composite materials.
The simulations required extensive and closely coordinated use of multiple high-performance computing facilities, including ARCHER (a UK supercomputer in Edinburgh) and STFC’s BlueJoule and BlueWonder (supercomputing facilities at the Daresbury Laboratory). The massive computing power and choreography required to carry out this type of simulation means it would have been impossible a decade ago, and very difficult even five years ago.

Source: http://goo.gl/8ek3Ai

 

Didascalia foto: The ARCHER supercomputer one of several used in this study

 


Leggi anche

Altair launches a modern, comprehensive and high-fidelity database of simulation materials. The database includes thousands of high quality materials including polymers, metals and composites, directly linked to Altair and other well-known solvers….

Leggi tutto…

Connettendo il mondo reale con il virtuale, il processo di sviluppo di virtual materials testing permette di accelerare i tempi e ridurre i costi della filiera. Questo processo, creando un vero e proprio gemello digitale della produzione, supporta gli utenti attraverso l’intera filiera dallo sviluppo dei materiali, alla progettazione, ingegneria e produzione….

Leggi tutto…

Aperte le iscrizioni per la Scuola Estiva Materiali Compositi 2020

Quest’anno la Scuola Estiva Materiali Compositi si svolgerà online e in collaborazione con Compositi Magazine e la piattaforma Compositi Live Webinar. L’evento si svolgerà in tre sessioni pomeridiane nelle giornate del 15, 16 e 17 settembre. È possibile iscriversi sia a una sola sessione, che a due o a tutte e tre. Iscriviti ad ogni sessione a cui vuoi partecipare, effettuando una singola registrazione per ciascuna. L’iscrizione verrà ritenuta valida una volta ricevuta la contabile del bonifico….

Leggi tutto…

BMW additive manufacturing campus

BMW Group ha aperto ufficialmente il suo nuovo campus di produzione additiva. Il nuovo centro riunisce sotto un unico tetto lo sviluppo di prototipi e pezzi di seri, la ricerca nel campo delle nuove tecnologie di stampa 3D e le attività di formazione legate alla produzione toolless…

Leggi tutto…

La Graduate School of Engineering della Tohoku University, la Graduate School of Information Sciences e NEC Corporation stanno lavorando insieme a un sistema integrato in grado di accelerare lo sviluppo della plastica rinforzata con fibra di carbonio (CFRP) per strutture aeronautiche…

Leggi tutto…