New Materials Integration System to accelerate the Development of Composites for Aircraft

Tohoku University’s Graduate School of Engineering, Graduate School of Information Sciences and NEC Corporation are jointly working on a materials integration system that would accelerate the development of carbon fiber reinforced plastics (CFRP) for aircraft.

Japan currently produces a wide range of materials, but which require a lot of time and expense to develop. This new R&D, conducted under the Japanese government’s Cross-ministerial Strategic Innovation Promotion Program (SIP), aims to reduce the cost and time needed to develop composite materials for next-generation aircraft by up to 50 percent.

To achieve this, the team will create an integrated system capable of digitally developing CFRP for aircraft structures using simulation tools developed by Tohoku University, and NEC’s SX-Aurora TSUBASA vector supercomputer.

Specifically, by implementing simulation codes on a supercomputer that can analyze mechanical responses from a molecular level to the aircraft’s wing and fuselage, the processes of material selection and design can be performed at high speed and at multiple scales.

With this system as a common platform, it is expected that tailor-made material development can more effectively meet the demands of airframe manufacturers.

Tohoku University New Materials Integration System

R&D Overview

Development of a multiscale simulation platform (Professor Tomonaga Okabe, Graduate School of Engineering, Tohoku University)

Using the results from scientific research in composite materials, Tohoku University has already developed a variety of simulation tools for CFRP, together with companies participating in Japan’s Cross-ministerial Strategic Innovation Promotion Program. The integrated systems developed in this R&D will be applied to aircraft as well as a wide range of other vehicles in the future.


Application of high performance computing technology (Professor Hiroaki Kobayashi, Graduate School of Information Sciences, Tohoku University)

Simulation programs for materials integration systems will be vectorized and parallelized for the SX-Aurora TSUBASA vector supercomputer to significantly reduce the execution times of the simulation programs. This research emphasizes cooperation with participating companies to accelerate programs.


System construction using supercomputer (NEC)

The SX-Aurora TSUBASA supercomputer consists of vector engines that perform high performance simulation programs and a vector host that performs a wide variety of processes. This R&D utilizes NEC’s supercomputer technologies and system construction know-how to systematize simulation programs with the SX-Aurora TSUBASA supercomputer. The materials integration system will combine both data science and optimal material design.


Source: Tohoku University

Leggi anche

The focus of this work is the aircraft fuel system and the objective is to develop a thermoplastic composite material which is suitable for use in aircraft fuel systems. Read the project, it won our first call for papers….

Leggi tutto…

Together with GKN Aerospace Deutschland GmbH, TUM – Chair of Carbon Composites, SGL Carbon, Augsburg University of Applied Sciences, and under the co-founding authority of Bavarian Ministry of Economic Affairs, Regional Development and Energy, Cevotec started a pioneering R&D project: the full automation of sandwich structure production. …

Leggi tutto…

Thanks to high-performance aerospace-grade materials, the importance of additive manufacturing (3D printing) continues to be recognized within the aerospace industry. Here, Scott Sevcik, VP Aerospace Business Segment at Stratasys, one of the leading manufacturers of additive manufacturing solutions, looks at some of the current trends and developments that highlight the technology’s ongoing ability to deliver opportunities for aerospace manufacturers and their suppliers…

Leggi tutto…

Nano-Tech announced the partnership with Mecaer Aviation Group for the realization of the interior of the latest generation helicopters. The Italian company will provide special “flame retardant” materials for helicopter cabins. Components have passed the rigid safety tests of Far.

Leggi tutto…

The use of thermoplastic composites (TPCs) in the transport industry has increased in recent years due to the advantages offered by these materials in terms of recycling, reprocessing and repairing. TPCs can lead to a reduction in the amount of waste materials and virgin raw material required, thus lowering the environmental impact. This article – published in the March issue of Compositi Magazine – talks about SPARTA Project that aims to develop an innovative recycling method for TPCs….

Leggi tutto…