ICN2 spray-drying

Spray-drying to produce MOFs and COFs in industrial applications

MOFs and COFs are porous materials with a broad range of applications, such as gas storage, CO2 capture or drug delivery. The ICN2 Supramolecular NanoChemistry and Materials Group has demonstrated in a work in Accounts of Chemical Research that spray-drying is a suitable method for producing this kind of materials.

Spray-drying is an industrial technique based on the atomization of a solution into aerosol droplets that in turn are evaporated to end up with a powder (dried particles). This technique is well known in the chemical, food and pharmaceutical industries, where it is routinely used.

At the turn of the century, scientists showed that spray-drying could be used to engineer new materials by utilizing each aerosol droplet as a confined microreactor. Building on that work and successive progresses, the Supramolecular NanoChemistry and Materials Group at the ICN2 (Spain), led by ICREA Prof. Daniel Maspoch, has expanded the scope of chemistries accessible in aerosol droplets, including coordination and covalent chemistry. They have also demonstrated that spray-drying is a suitable method to produce metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), as well as composites thereof. These results are discussed in Accounts of Chemical Research, in a work also signed by Javier Troyano, Ceren Çamur, Luis Garzón-Tovar, Arnau Carné-Sánchez and Inhar Imaz, all from the aforementioned ICN2 group.

MOFs and COFs are very attractive porous materials due to their broad range of applications, such as gas storage, CO2 capture or drug delivery. Composites made of MOFs or COFs and other materials are able to boast the strengths and mitigate the weaknesses of each component. However, to facilitate the adoption of these materials, proper fabrication methods must exist. Unlike conventional methods, spray-drying enables rapid, continuous and scalable production of dry microspherical powders in a single step. In fact, as part of the project ProDIA, and in collaboration with Prof. David Farrusseng, Axel’One and the company MOFapps, the group recently demonstrated large-scale spray-drying production of the so-called MOFs HKUST-1 and ZIF-8.

The authors anticipate that spray-drying will soon be useful to synthesize other types of crystalline porous materials. Nevertheless, they also assure that MOFs, COFs and their related composites will still have to walk some more in the journey from the laboratory to the market. They are optimistic that spray-drying processes can still be made greener, safer, cheaper and more amenable to pilot-scale.

 

Source: ICN2


Leggi anche

According to data from the German Environment Agency, private households currently are responsible for about a quarter of Germany’s energy consumption in total. A good half of this energy is obtained from natural gas and crude oil. Fraunhofer Institute for Applied Polymer Research IAP team is busy looking at how to store this valuable gas. To this end, they are producing new types of hydrogen tanks made of fiber-reinforced composites…

Leggi tutto…

The U.S. Department of Energy Water Power Technologies Office’s Water Power Laboratory Seedling Program has assigned $75,000 in funding to NREL and Montana State University to enable research, development, and testing of emerging technologies to advance marine energy. The researchers implemented a new approach for the renewable energy industry by additively manufacturing internal molds designed to become a permanent part of the final load-bearing structure….

Leggi tutto…

Sabic launches a flame retardant compound and reinforced with carbon fibers with a reduced carbon footprint thanks to biological raw materials and recycled material. The LNP THERMOCOMP DC0041PE-7M1D145W compound offers customers a new sustainable option for demanding applications in electrical/electronics, healthcare and other key industries….

Leggi tutto…

Il corso di perfezionamento in “Ingegneria dei Materiali Compositi” organizzato dall’Università Politecnica delle Marche giunge alla terza edizione. Il corso, che avrà una durata di 120 ore e conferirà 12 CFU, si propone di fornire le nozioni necessarie per affrontare tutti gli aspetti inerenti il mondo dei compositi, partendo dalle fasi costituenti i compositi fino alla caratterizzazione del componente finito….

Leggi tutto…

Researchers from Chalmers University of Technology in Gothenburg, Sweden, have created a structural battery that achieves ten times better performance than all previous versions. It is made of carbon fiber which at the same time plays the role of electrode, conductor, and carrier material. The latest research paves the way for essentially no-mass energy storage in vehicles and other technologies….

Leggi tutto…