Droni in materiali compositi prendono il volo

One of the great promises of composites use in drones is as an enabler for persistent, long-duration systems that provide wide-area Wifi Internet access. Ideally, such drones would be solar-powered and able to serve land areas of many square miles with uninterrupted Internet access for weeks at a time. There are at least two programs pursuing this technology, and results so far are promising, if mixed.

One is the work of social media giant Facebook (Menlo Park, CA, US), and the other, a product of the Massachusetts Institute of Technology (MIT, Cambridge, MA, US). Each has built and flown prototypes and aims to achieve unprecedented UAV flight durations with radically new designs, which, by necessity, hope to maximize the advantages of advanced composites.

In development since 2014, Facebook’s Aquila (Fig. 1), an all-carbon-fiber composite, solar-powered, four-propeller drone, has been test flown twice. In 2016, it was aloft for 96 minutes below 305m, and this past year, it flew for about 106 minutes, reaching an altitude of 914.4m. The Aquila is intended for big things: Aquila’s stated target customer base is the several billion people around the world without reliable online access. Given the enormous geographical scale, the drone must be capable of very long, uninterrupted flight, and that, in turn, has profound consequences for Aquila’s flight performance and design parameters. Facebook must build and launch pilotless aircraft capable of continuous flight for months and at very high altitudes — 60,000-90,000 ft (18,290-27,430m).

The flight-tested version has a “wingspan wider than a Boeing 737,” which puts it in the range of 110 ft (±34m). Foregoing the extra weight and drag of conventional landing gear, the Aquila also is equipped with a Kevlar “landing pad” bonded to the bottom of the motor pods, one reason it only weighs about 1,000 lb (454 kg), with roughly half of that mass accounted for by batteries.

Meanwhile, a team of Massachusetts Institute of Technology (MIT) engineers has designed, built and tested a UAV with a 24 ft (7.32m) wingspan, fabricated entirely from composites reinforced with carbon fiber and Kevlar. The objective of the UAV development project, dubbed Jungle Hawk Owl and funded by the US Air Force (Gateways Branch, AFLCMC/HNAG, Hanscom Air Force Base, Bedford, MA, US). The goal is to build a drone capable of staying aloft for five or more days, in high and low geographical latitudes, in all seasons, at an altitude of approximately 4,572m. Such a drone would be designed to perform as a communications hub, providing temporary Internet/phone connections over a large area in the event of a wide-scale power or service outage


Leggi anche

The realization of a human settlement on the Moon is the main purpose of most future space missions. Despite it represents a fundamental and necessary step for this scope, the lunar environment, and high mission cost do not make this challenge easy. This article – published in the March issue of Compositi Magazine – tries to solve the previously mentioned problem, showing the preliminary design of a lightweight and deployable habitat able to ensure long-duration missions on the lunar surface….

Leggi tutto…

An all-new Falcon jet was announced by the company Dassault Aviation. It will fly non-stop from New York to Shanghai, from Los Angeles to Sydney, from Hong Kong to New York, or from Paris to Santiago. Featuring a range of 7,500 nautical miles, the top speed will be Mach 0.925….

Leggi tutto…

Carbon ThreeSixty, Leonardo, and the National Composites Centre have joined forces for a new project co-funded by Innovate UK, the UK’s innovation agency, to develop a revolutionary all-composite helicopter wheel. The new NATEP project has the aim to design, develop and manufacture an ultra-low mass, robust, proof-of-concept carbon-fiber-reinforced plastic (CFRP) wheel for rotary-wing aircraft….

Leggi tutto…

Il corso di perfezionamento in “Ingegneria dei Materiali Compositi” organizzato dall’Università Politecnica delle Marche giunge alla terza edizione. Il corso, che avrà una durata di 120 ore e conferirà 12 CFU, si propone di fornire le nozioni necessarie per affrontare tutti gli aspetti inerenti il mondo dei compositi, partendo dalle fasi costituenti i compositi fino alla caratterizzazione del componente finito….

Leggi tutto…

Mikrosam has completed the installation of its latest custom-made prepreg tape slitting and tow-rewinding machine at the National Institute for Aviation Research (NIAR) at Wichita State University.

Leggi tutto…