Composite camshaft module

Composite camshaft module reduces engine weight and assembly costs

Researchers and companies in automotive sector constantly try to develop new lightweight components to reduce vehicles weight. Currently, however, cars still have camshaft modules, which are a key component of powertrains, made from aluminum. Now a research team from the Fraunhofer Institute for Chemical Technology ICT, in collaboration with their partners, has succeeded in manufacturing a camshaft module from fiber-reinforced thermoset polymers. This lightweight design element helps lower engine weight and reduces assembly costs. It is currently available as a functional demonstrator.

Camshafts ensure that the charge-cycle valves in internal combustion engines are opened and closed reliably and precisely. These valves are located in the camshaft module, the standard material for which is still aluminum metal. But automotive manufacturers and suppliers are putting great effort into producing powertrains and their components in lightweight design because reduce weight is one of the most effective methods for reducing CO2 emissions. Researchers at Fraunhofer ICT in Pfinztal are supporting the automotive industry in its efforts with a newly developed camshaft module made of thermosetting composite materials. This lightweight camshaft module was realized in cooperation with the MAHLE Group and associated partners Daimler AG, SBHPP/Vyncolit NV and Georges Pernoud. The German Federal Ministry for Economic Affairs and Energy (BMWi) has been funding the project.

 

The material choice

When it comes to the choice of the right polymer, the project partners opted for high-strength, fiber-reinforced thermoset polymers, as they are well able to withstand high temperatures and mechanical and chemical stresses such as those caused by synthetic motor oils and coolants, for instance. “We contribute the know-how regarding how to design the component geometries to suit the material and the process so that they satisfy all requirements,” says Thomas Sorg, a researcher at Fraunhofer ICT. “The camshaft module is located in the cylinder head, so normally in the upper installation space of the powertrain. Here, it makes particular sense to reduce weight, since doing so also contributes to lowering the vehicle’s center of gravity.”

Plastic camshaft module
The fiber-reinforced thermoset polymer component lowers engine weight. © Fraunhofer ICT

Composite camshaft module: advantages for the companies and for the climate

Castings made from aluminum require extensive reworking after casting, resulting in high costs. Fiber-reinforced thermoset polymers allow a near-net-shape manufacturing, thus requiring comparatively little reworking and which again leads to reduced production cost. Also, at up to 500,000 units, the service life of thermoset polymer injection molds is significantly higher than that of aluminum high-pressure die cast molds. Furthermore, plastics reinforced with a high fiber content have a much CO2 footprint compared with aluminum, since this light metal is very energy-intensive to manufacture.

And there is another advantage: automotive manufacturers are eager to minimize noise emissions. Rattling cars are not only annoying, they are also a clear competitive disadvantage, so noise, vibration and harshness (NVH) characteristics are high up on the list of factors used to assess vehicle quality. Polymers have good damping characteristics.

The camshaft module features a monolithic design with integrated bearings – in other words, it is manufactured in one piece, thus reducing assembly time in the engine manufacturing plant. Car manufacturers receive a pre-assembled module from their supplier and can mount it on the engine with just a few simple mounting operations. This eliminates the need for separate, time-consuming installation of the camshaft. This innovative solution boasts an additional advantage: aluminum inserts in highly stressed areas of the camshaft bearings absorb the direct forces.

 

600 test hours on the engine test stand

During initial tests on the engine test stand, the researchers observed positive operating performance, and weight savings were demonstrated compared with the aluminum reference part. Simulation calculations help engineers design and validate the prototype before the manufacturing process begins. “Although the stiffness of the thermoset polymer is only a quarter of that of aluminum, design measures enabled us to adhere to the maximum allowable deformation.” After 600 hours of testing on the engine test stand, the lightweight design element demonstrated flawless functionality in a state-of-the-art internal combustion engine. With the aid of the planned fuel injection tests, the project partners want to prove the functionality and the NVH characteristics taking the gas forces of the combustion process into account.

 

Featured image: The composite camshaft module features a monolithic design with integrated bearings. © Fraunhofer ICT

 

Source: Fraunhofer ICT


Leggi anche

Sustainable Composites logo

Una nuova iniziativa per affrontare il problema del riutilizzo e del riciclo dei materiali compositi alla fine del loro ciclo di vita prende il via nel Regno Unito, sotto la guida del National Composites Centre (NCC) e del Center for Process Innovation (CPI).
Da questa iniziativa, denominata Sustainable Composites, dovrebbe nascere la prossima generazione di materiali compositi eco-compatibili, grazie a una partnership tra industria, mondo accademico e governo che sfrutterà la ricerca e lo sviluppo tecnologico dei compositi nel Regno Unito …

Leggi tutto…

The Brainstorm project: rail vehicle frame

Sotto la spinta delle sfide del settore ferroviario per l’industria e il mondo accademico, e cioè ridurre i costi e le emissioni di carbonio e migliorare la capacità e la soddisfazione del cliente, il progetto BRAINSTORM ha sviluppato tubi in composito ultraleggeri per la produzione di vagoni ferroviari innovativi, leggeri e modulari, che riducono i costi di produzione e le emissioni di carbonio…

Leggi tutto…

Recotrans project first demo samples

Nel contesto del progetto RECOTRANS, che ha l’obiettivo di produrre veicoli più leggeri e meno inquinanti senza determinare un aumento dei costi, sono stati realizzati i primi tre prototipi dimostrativi rispettivamente di componenti auto, autocarro e treno, grazie a un nuovo processo di produzione che utilizza microonde e materiali plastici leggeri…

Leggi tutto…

ECOXY Project develops bio-based epoxy resin and fibre-reinforcements

Partito a giugno 2017 con termine previsto per novembre 2020, il progetto europeo ECOXY punta a sviluppare resine epossidiche innovative a base biologica e rinforzi in fibra per produrre nuovi compositi termoindurenti (FRTC) sostenibili e competitivi sia a livello di prestazioni che di costi, con l’obiettivo di raggiungere funzionalità avanzate. Questi nuovi compositi potranno trovare applicazione nel settore automobilistico e nell’edilizia…

Leggi tutto…

BRYSON project

Il Progetto BRYSON che vede coinvolto un consorzio di aziende e istituti di ricerca tedesche, tra cui l’Università tecnica di Dresda, risponde alla sfida della transizione verso l’idrogeno. Si pone infatti l’obiettivo di sviluppare innovativi sistemi di stoccaggio dell’idrogeno per una integrazione ottimizzata nella struttura dei vari tipi di veicoli…

Leggi tutto…