Infusion 4.0: innovation in vacuum infusion monitoring

The Fraunhofer Institute for Structural Durability and System Reliability LBF has spearheaded a new project focusing on the efficiency of fibre-optic sensors in monitoring the vacuum infusion process during the production of large composite components.

The project Infusion 4.0

Infusion 4.0, a project funded by the German Federal Ministry of Economics and Energy, will be run by Fraunhofer and its partner MT Aerospace AG. Using carbon fibre reinforced plastic (CFRP) booster housings, MT manufactures large CRFP components using vacuum infusion processes. In vacuum infusion, a dry-wrapped pre-form is inserted in a vacuum bag and is infiltrated with resin while slowly rotating in an oven. According to the companies, intelligent sensors are required in order to monitor the flow front of the in-flowing resin and to improve processes. Fraunhofer LBF researchers are now embedding fibre-optic sensors into the component as early as the winding process in various three-dimensional positions. These then control resin distribution during this production step.

Fibre-optic sensors

According to Fraunhofer, at the line when the resin first gets in contact with the dry fibres, the signals are transmitted from the rotating part in the oven to an outside computer in situ in order to digitally monitor the process. A digital representation of the sensor position on the component can show when the flow front reaches the sensor.

We are receiving transparent information for the manufacturing process of these thick-walled parts for this first time,” said Martin Lehmann, research associate at Fraunhofer LBF. “This increases process reliability for vacuum infusion processes.”

Advantages of the new manufacturing process

According to Lehmann, the new manufacturing process can increase process stability, while the information gained by resin flow monitoring can help ensure the reproducibility and quality of the new product, enabling intervention if required during production.

 

Source: Fraunhofer and Materials Today


Leggi anche

Carbon ThreeSixty, Leonardo, and the National Composites Centre have joined forces for a new project co-funded by Innovate UK, the UK’s innovation agency, to develop a revolutionary all-composite helicopter wheel. The new NATEP project has the aim to design, develop and manufacture an ultra-low mass, robust, proof-of-concept carbon-fiber-reinforced plastic (CFRP) wheel for rotary-wing aircraft….

Leggi tutto…

Il corso di perfezionamento in “Ingegneria dei Materiali Compositi” organizzato dall’Università Politecnica delle Marche giunge alla terza edizione. Il corso, che avrà una durata di 120 ore e conferirà 12 CFU, si propone di fornire le nozioni necessarie per affrontare tutti gli aspetti inerenti il mondo dei compositi, partendo dalle fasi costituenti i compositi fino alla caratterizzazione del componente finito….

Leggi tutto…

Mikrosam has completed the installation of its latest custom-made prepreg tape slitting and tow-rewinding machine at the National Institute for Aviation Research (NIAR) at Wichita State University.

Leggi tutto…

GKN Aerospace is leading a new UK industry consortium called ASCEND to develop and accelerate composite material and process technologies for the next generation of energy-efficient aircraft and future mobility. The collaboration with other 13 partners will strengthen the UK’s position as a technology leader in future lightweight structures and help to reduce energy consumption and carbon emissions in the aerospace and automotive industry….

Leggi tutto…

Il network di comunicazione di Compositi indice la sua prima call for papers per dare ancora più rilievo alla qualità e ancora più voce alle realtà meritevoli. È il tuo momento, sii protagonista del settore. Il materiale inviato dovrà attenersi all’applicazione di materiali compositi. Condividi con noi il tuo abstract entro il 30 aprile, scrivendoci a: redazione@tecneditedizioni.it…

Leggi tutto…